Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The major Vibrio cholerae autoinducer and its role in virulence factor production

Abstract

Vibrio cholerae, the causative agent of the human disease cholera, uses cell-to-cell communication to control pathogenicity and biofilm formation1,2. This process, known as quorum sensing, relies on the secretion and detection of signalling molecules called autoinducers. At low cell density V. cholerae activates the expression of virulence factors and forms biofilms. At high cell density the accumulation of two quorum-sensing autoinducers represses these traits. These two autoinducers, cholerae autoinducer-1 (CAI-1) and autoinducer-2 (AI-2), function synergistically to control gene regulation, although CAI-1 is the stronger of the two signals. V. cholerae AI-2 is the furanosyl borate diester (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran borate3. Here we describe the purification of CAI-1 and identify the molecule as (S)-3-hydroxytridecan-4-one, a new type of bacterial autoinducer. We provide a synthetic route to both the R and S isomers of CAI-1 as well as simple homologues, and we evaluate their relative activities. Synthetic (S)-3-hydroxytridecan-4-one functions as effectively as natural CAI-1 in repressing production of the canonical virulence factor TCP (toxin co-regulated pilus). These findings suggest that CAI-1 could be used as a therapy to prevent cholera infection and, furthermore, that strategies to manipulate bacterial quorum sensing hold promise in the clinical arena.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified model for quorum sensing in V. cholerae.
Figure 2: Activity, 1 H-NMR spectrum and structural identification of CAI-1 as ( S )-3-hydroxytridecan-4-one.
Figure 3: Activity profiles for synthetic CAI-1 and homologues.
Figure 4: CAI-1 inhibits virulence factor expression.

References

  1. Miller, M. B., Skorupski, K., Lenz, D. H., Taylor, R. K. & Bassler, B. L. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae . Cell 110, 303–314 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, J. et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae . Proc. Natl Acad. Sci. USA 99, 3129–3134 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Passador, L., Cook, J. M., Gambello, M. J., Rust, L. & Iglewski, B. H. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260, 1127–1130 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Eberhard, A. et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444–2449 (1981)

    Article  CAS  PubMed  Google Scholar 

  9. Solomon, J. M., Lazazzera, B. A. & Grossman, A. D. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis . Genes Dev. 10, 2014–2024 (1996)

    Article  CAS  PubMed  Google Scholar 

  10. Henke, J. M. & Bassler, B. L. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi . J. Bacteriol. 186, 6902–6914 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xavier, K. B. & Bassler, B. L. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6, 191–197 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Schauder, S., Shokat, K., Surette, M. G. & Bassler, B. L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41, 463–476 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Miller, S. T. et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15, 677–687 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Hammer, B. K. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae . Mol. Microbiol. 50, 101–104 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, J. & Mekalanos, J. J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae . Dev. Cell 5, 647–656 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA 84, 2833–2837 (1987)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neiditch, M. B. et al. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 126, 1095–1108 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eliot, A. C. & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Taga, M. E. & Bassler, B. L. Chemical communication among bacteria. Proc. Natl Acad. Sci. USA 100, 14549–14554 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pesci, E. C. et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa . Proc. Natl Acad. Sci. USA 96, 11229–11234 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horinouchi, S. & Beppu, T. A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus . Mol. Microbiol. 12, 859–864 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. Flavier, A. B., Clough, S. J., Schell, M. A. & Denny, T. P. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum . Mol. Microbiol. 26, 251–259 (1997)

    Article  CAS  PubMed  Google Scholar 

  23. Wang, L. H. et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol. Microbiol. 51, 903–912 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Colnaghi Simionato, A. V., da Silva, D. S., Lambais, M. R. & Carrilho, E. Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. J. Mass Spectrom. 42, 490–496 (2007)

    Article  ADS  PubMed  Google Scholar 

  25. Hall, D. R. et al. Identification of components of male-produced pheromone of coffee white stemborer, Xylotrechus quadripes . J. Chem. Ecol. 32, 195–219 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Sakai, T., Nakagawa, Y., Takahashi, J., Iwabuchi, K. & Ishii, K. Isolation and identification of the male sex pheromone of the grape borer Xylotrechus pyrrhoderus Bates (Coleoptera: Cerambycidae). Chem. Lett. (Jpn) 13, 263–264 (1984)

    Article  Google Scholar 

  27. Leal, W. S., Shi, X., Nakamuta, K., Ono, M. & Meinwald, J. Structure, stereochemistry, and thermal isomerization of the male sex pheromone of the longhorn beetle Anaglyptus subfasciatus . Proc. Natl Acad. Sci. USA 92, 1038–1042 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sack, D. A., Sack, R. B., Nair, G. B. & Siddique, A. K. Cholera. Lancet 363, 223–233 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Hammer, B. K. & Bassler, B. L. Inaugural article: Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae . Proc. Natl Acad. Sci. USA 104, 11145–11149 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Bassler, Semmelhack and Hughson groups for discussions. We thank I. Pelczer for the double-quantum filtered correlation spectroscopy experiment and initial 13C-NMR studies. This work was supported by the Howard Hughes Medical Institute (B.L.B.) and grants from the National Science Foundation (B.L.B.) and the National Institutes of Health (B.L.B. and M.F.S.). M.E.P. was supported by a graduate fellowship from Amgen through the Medicinal Chemistry Division of the American Chemical Society and by the Horst Witzel Prize from the Cephalon Corporation.

Author Contributions D.A.H. purified CAI-1 and performed biological activity and virulence assays. M.E.P. performed chemical analyses and prepared synthetic CAI-1. C.M.K. aided in CAI-1 purification and conducted chiral chromatographic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie L. Bassler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains the scheme for synthesis of CAI-1 and homologues (Supplementary Scheme 1), GC/MS data for extracts and synthetic materials (Supplementary Figs. 1-3), chiral SFC traces (Supplementary Figure 4), representative signalling molecules (Supplementary Figure 5), analysis of CAI-1 stability (Supplementary Figure 6), Supplementary Methods, Supplementary Notes containing references used in synthesis, and Supplementary NMR spectra of extracted autoinducer, synthetic autoinducer, and homologues. (PDF 8603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, D., Pomianek, M., Kraml, C. et al. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450, 883–886 (2007). https://doi.org/10.1038/nature06284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06284

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing