Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH

Abstract

Acid-sensing ion channels (ASICs) are voltage-independent, proton-activated receptors that belong to the epithelial sodium channel/degenerin family of ion channels and are implicated in perception of pain, ischaemic stroke, mechanosensation, learning and memory. Here we report the low-pH crystal structure of a chicken ASIC1 deletion mutant at 1.9 Å resolution. Each subunit of the chalice-shaped homotrimer is composed of short amino and carboxy termini, two transmembrane helices, a bound chloride ion and a disulphide-rich, multidomain extracellular region enriched in acidic residues and carboxyl-carboxylate pairs within 3 Å, suggesting that at least one carboxyl group bears a proton. Electrophysiological studies on aspartate-to-asparagine mutants confirm that these carboxyl-carboxylate pairs participate in proton sensing. Between the acidic residues and the transmembrane pore lies a disulphide-rich ‘thumb’ domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function and structure of chicken ASIC1.
Figure 2: Subunit structure and trimer assembly.
Figure 3: Intersubunit interactions and solvent-filled cavities.
Figure 4: Structure and key residues in the transmembrane domains.
Figure 5: Proton- and chloride-binding sites.
Figure 6: Mechanism of pH-dependent gating.

Similar content being viewed by others

References

  1. Krishtal, O. The ASICs: Signaling molecules? Modulators? Trends Neurosci. 26, 477–483 (2003)

    Article  CAS  Google Scholar 

  2. Lingueglia, E. Acid sensing ion channels in sensory perception. J. Biol. Chem. 282, 17325–17329 (2007)

    Article  CAS  Google Scholar 

  3. Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 (2002)

    Article  CAS  Google Scholar 

  4. Krishtal, O. A. & Pidoplichko, V. I. A receptor for protons in the nerve cell membrane. Neuroscience 5, 2325–2327 (1980)

    Article  CAS  Google Scholar 

  5. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997)

    Article  ADS  CAS  Google Scholar 

  6. O’Hagan, R. & Chalfie, M. Mechanosensation in Caenorhabditis elegans. Int. Rev. Neurobiol. 69, 169–203 (2006)

    Article  Google Scholar 

  7. Lingueglia, E., Deval, E. & Lazdunski, M. FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRF-amide and related peptides. Peptides 27, 1138–1152 (2006)

    Article  CAS  Google Scholar 

  8. Chen, C. C., England, S., Akopian, A. N. & Wood, J. N. A sensory neuron-specific, proton-gated ion channel. Proc. Natl Acad. Sci. USA 95, 10240–10245 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Price, M. P., Snyder, P. M. & Welsh, M. J. Cloning and expression of a novel human brain Na+ channel. J. Biol. Chem. 271, 7879–7882 (1996)

    Article  CAS  Google Scholar 

  10. Lingueglia, E. et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 272, 29778–29783 (1997)

    Article  CAS  Google Scholar 

  11. Waldmann, R. et al. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem. 272, 20975–20978 (1997)

    Article  CAS  Google Scholar 

  12. Grunder, S., Geisler, H. S., Bassler, E. L. & Ruppersberg, J. P. A new member of acid-sensing ion channels from pituitary gland. Neuroreport 11, 1607–1611 (2000)

    Article  CAS  Google Scholar 

  13. Alvarez de la Rosa, D., Zhang, P., Shao, D., White, F. & Canessa, C. M. Functional implications of the localization and activity of acid-sensing channels in rat peripheral nervous system. Proc. Natl Acad. Sci. USA 99, 2326–2331 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Alvarez de la Rosa, D. et al. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol. (Lond.) 546, 77–87 (2003)

    Article  CAS  Google Scholar 

  15. Price, M. P. et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001)

    Article  CAS  Google Scholar 

  16. Bassilana, F. et al. The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties. J. Biol. Chem. 272, 28819–28822 (1997)

    Article  CAS  Google Scholar 

  17. Benson, C. J. et al. Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc. Natl Acad. Sci. USA 99, 2338–2343 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Wemmie, J. A. et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning and memory. Neuron 34, 463–477 (2002)

    Article  CAS  Google Scholar 

  19. Sutherland, S. P., Benson, C. J., Adelman, J. & McCleskey, E. W. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl Acad. Sci. USA 98, 711–716 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Xiong, Z. G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004)

    Article  CAS  Google Scholar 

  21. Hesselager, M., Timmermann, D. B. & Ahring, P. K. pH dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J. Biol. Chem. 279, 11006–11015 (2004)

    Article  CAS  Google Scholar 

  22. Korkushco, A. O., Krishtal, O. A. & Nowycky, M. C. Steady-state characteristics of the proton receptor in the somatic membrane of rat sensory neurons. Neurofiziologiya 15, 632–638 (1983)

    Google Scholar 

  23. Immke, D. C. & McCleskey, E. W. Protons open acid-sensing ion channels by catalyzing relief of Ca2+ block. Neuron 37, 75–84 (2003)

    Article  CAS  Google Scholar 

  24. Zhang, P., Sigworth, F. J. & Canessa, C. M. Gating of acid-sensitive ion channel-1: Release of Ca2+ block vs allosteric mechanism. J. Gen. Physiol. 127, 109–117 (2006)

    Article  CAS  Google Scholar 

  25. Baron, A., Waldmann, R. & Lazdunski, M. ASIC-like, proton-activated currents in rat hippocampal neurons. J. Physiol. (Lond.) 539, 485–494 (2002)

    Article  CAS  Google Scholar 

  26. Askwith, C. C., Wemmie, J. A., Price, M. P., Rokhlina, T. & Welsh, M. J. Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J. Biol. Chem. 279, 18296–18305 (2004)

    Article  CAS  Google Scholar 

  27. Coscoy, S., Lingueglia, E., Lazdunski, M. & Barbry, P. The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer. J. Biol. Chem. 273, 8317–8322 (1998)

    Article  CAS  Google Scholar 

  28. Snyder, P. M., Cheng, C., Prince, L. S., Rogers, J. C. & Welsh, M. J. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J. Biol. Chem. 273, 681–684 (1998)

    Article  CAS  Google Scholar 

  29. Coric, T., Zheng, D., Gerstein, M. & Canessa, C. M. Proton sensitivity of ASIC1 appeared with the rise of fishes by changes of residues in the region that follows TM1 in the ectodomain of the channel. J. Physiol. (Lond.) 568, 725–735 (2005)

    Article  CAS  Google Scholar 

  30. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006)

    Article  CAS  Google Scholar 

  31. Staruschenko, A., Adams, E., Booth, R. E. & Stockand, J. D. Epithelial Na+ channel subunit stoichiometry. Biophys. J. 88, 3966–3975 (2005)

    Article  CAS  Google Scholar 

  32. Firsov, D., Gautschi, I., Merillat, A.-M., Rossier, B. C. & Schild, L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J. 17, 344–352 (1998)

    Article  CAS  Google Scholar 

  33. Eskandari, S. et al. Number of subunits comprising the epithelial sodium channel. J. Biol. Chem. 274, 27281–27286 (1999)

    Article  CAS  Google Scholar 

  34. Unwin, N. Refined structure of the nicotinic acetylcholine receptor. J. Mol. Biol. 346, 967–989 (2005)

    Article  CAS  Google Scholar 

  35. Cushman, K. A., Marsh-Haffner, J., Adelman, J. & McCleskey, E. W. A conformational change in the extracellular domain that accompanies desensitization of acid-sensing ion channel (ASIC) 3. J. Gen. Physiol. 129, 345–350 (2007)

    Article  CAS  Google Scholar 

  36. Coric, T., Zhang, P., Todorovic, N. & Canessa, C. M. The extracellular domain determines the kinetics of desensitization in acid-sensitive ion channel 1. J. Biol. Chem. 278, 45240–45247 (2003)

    Article  CAS  Google Scholar 

  37. Baron, A., Schaefer, L., Lingueglia, E., Champigny, G. & Lazdunski, M. Zn2+ and H+ are coactivators of acid-sensing ion channels. J. Biol. Chem. 276, 35361–35367 (2001)

    Article  CAS  Google Scholar 

  38. Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998)

    Article  ADS  CAS  Google Scholar 

  39. MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350, 232–235 (1991)

    Article  ADS  CAS  Google Scholar 

  40. Reynolds, J. A. & Karlin, A. Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17, 2035–2038 (1978)

    Article  CAS  Google Scholar 

  41. Paukert, M., Babini, E., Pusch, M. & Grunder, S. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: Implications for channel gating. J. Gen. Physiol. 124, 383–394 (2004)

    Article  CAS  Google Scholar 

  42. Kellenberger, S., Auberson, M., Gautschi, I., Schneeberger, E. & Schild, L. Permeability properties of ENaC selectivity filter mutants. J. Gen. Physiol. 118, 679–692 (2001)

    Article  CAS  Google Scholar 

  43. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    Article  ADS  CAS  Google Scholar 

  44. Pfister, Y. et al. A gating mutation in the internal pore of ASIC1a. J. Biol. Chem. 281, 11787–11791 (2006)

    Article  CAS  Google Scholar 

  45. Goodman, M. B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002)

    Article  ADS  CAS  Google Scholar 

  46. Sawyer, L. & James, M. N. Carboxyl-carboxylate interactions in proteins. Nature 295, 79–80 (1982)

    Article  ADS  CAS  Google Scholar 

  47. Todorovic, N., Coric, T., Zhang, P. & Canessa, C. M. Effects of extracellular calcium on fASIC1 currents. Ann. NY Acad. Sci. 1048, 331–336 (2005)

    Article  ADS  CAS  Google Scholar 

  48. Bellizzi, J. J., Widom, J., Kemp, C. W. & Clardy, J. Producing selenomethionine-labeled proteins with a baculovirus expression vector system. Structure 7, R263–R267 (1999)

    Article  CAS  Google Scholar 

  49. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  50. Cowtan, K. & Zhang, K. Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999)

    Article  CAS  Google Scholar 

  51. Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)

    Article  CAS  Google Scholar 

  52. Jones, T. A., Zou, J.-Y. & Cowan, S. W. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  53. Brunger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all groups that provided us with ASIC DNAs. We thank T. Kawate for sharing the FSEC screening protocol, Gouaux laboratory members and E. McCleskey for discussions. We also thank the personnel at beamlines 8.2.1 and 8.2.2 of the Advanced Light Source and beamline X29 of the National Synchrotron Light Source. This work was supported by the NIH. E.G. is an investigator with the Howard Hughes Medical Institute.

Author Contributions E.G. and J.J. designed the project. J.J. performed cloning, cell culture, FSEC screening, purification and crystallography work. H.F. and E.B.G. did patch-clamp recordings. E.G. and J.J. wrote the manuscript.

Coordinates have been deposited with the Protein Data Bank under code 2QTS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gouaux.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Table S1, and Supplementary Figures S1-S9 with Legends. (PDF 1209 kb)

Supplementary Movie

This file contains a Supplementary Movie showing speculative mechanism of pH mediated channel gating. Simple animation of domain movement that might occur upon transition from high pH (resting state) to low pH (activated state/desensitized state). At high pH, the finger and thumb domains are separated, perhaps with one or more intervening calcium ions binding in the interdomain cleft and the ion channel is in closed state. Upon exposure to low pH, the calcium ions are released, the key acidic residues bind protons, the thumb and finger domains move closer, pivoting around the β-ball domain, and the ion channel opens and then desensitizes, coupled to the thumb domain by way of the ball-and-socket joint at the wrist junction. This file was uploaded on 11 October 2007 and the legend updated on 18 October 2007. (HTML 1105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasti, J., Furukawa, H., Gonzales, E. et al. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449, 316–323 (2007). https://doi.org/10.1038/nature06163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06163

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing