Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Unusual sugar biosynthesis and natural product glycodiversification

Abstract

The enzymes involved in the biosynthesis of carbohydrates and the attachment of sugar units to biological acceptor molecules catalyse an array of chemical transformations and coupling reactions. In prokaryotes, both common sugar precursors and their enzymatically modified derivatives often become substituents of biologically active natural products through the action of glycosyltransferases. Recently, researchers have begun to harness the power of these biological catalysts to alter the sugar structures and glycosylation patterns of natural products both in vivo and in vitro. Biochemical and structural studies of sugar biosynthetic enzymes and glycosyltransferases, coupled with advances in bioengineering methodology, have ushered in a new era of drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural diversity of prokaryotic NDP-sugars derived from NDP-4-keto-6-deoxy-α-D-glucose.
Figure 2: Mechanisms of enzymes catalysing sugar deoxygenation reactions.
Figure 3: Examples of sugar biosynthetic enzymes from the short-chain dehydrogenase/reductase enzyme family.
Figure 4: Mechanism of glycosyltransferases.
Figure 5: Overview of bioengineering strategies.
Figure 6: Glycodiversification of natural products.

References

  1. Weymouth-Wilson, A. C. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14, 99–110 (1997).

    CAS  PubMed  Google Scholar 

  2. Thorson, J. S., Hosted, T. J., Jiang, J., Biggins, J. B. & Ahlert, J. Nature's carbohydrate chemists: the enzymatic glycosylation of bioactive bacterial metabolites. Curr. Org. Chem. 5, 139–167 (2001).

    CAS  Google Scholar 

  3. Barton, W. A. et al. Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization. Nature Struct. Biol. 8, 545–551 (2001).

    CAS  PubMed  Google Scholar 

  4. Varki, A. et al. Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999).

    Google Scholar 

  5. Johnson, D. A. & Liu, H.-w. in Comprehensive Natural Product Chemistry (eds Barton, D. H. R., Meth-Cohn, O. & Nakanishi, K.) 311–365 (Elsevier, Amsterdam, 1999).

    Google Scholar 

  6. He, X., Agnihotri, G. & Liu, H.-w. Novel enzymatic mechanisms in carbohydrate metabolism. Chem. Rev. 100, 4615–4661 (2000).

    CAS  PubMed  Google Scholar 

  7. He, X. M. & Liu, H.-w. Formation of unusual sugars: mechanistic studies and biosynthetic applications. Annu. Rev. Biochem. 71, 701–754 (2002).

    CAS  PubMed  Google Scholar 

  8. Hallis, T. M. & Liu, H.-w. Learning Nature's strategies for making deoxy sugars: pathways, mechanisms, and combinatorial applications. Acc. Chem. Res. 32, 579–588 (1999).

    CAS  Google Scholar 

  9. He, X. & Liu, H.-w. Mechanisms of enzymatic C–O bond cleavages in deoxyhexose biosynthesis. Curr. Opin. Chem. Biol. 6, 590–597 (2002).

    CAS  PubMed  Google Scholar 

  10. Szu, P.-h., He, X., Zhao, L. & Liu, H.-w. Biosynthesis of TDP-D-desosamine: identification of a strategy for C4 deoxygenation. Angew. Chem. Int. Ed. 44, 6742–6746 (2005).

    CAS  Google Scholar 

  11. Oppermann, U. et al. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biol. Interact. 143–144, 247–253 (2003).

    PubMed  Google Scholar 

  12. Frey, P. A. The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 10, 461–470 (1996).

    CAS  PubMed  Google Scholar 

  13. Thoden, J. B., Frey, P. A. & Holden, H. M. Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose-4-epimerase from Escherichia coli: implications for the catalytic mechanism. Biochemistry 35, 5137–5144 (1996).

    CAS  PubMed  Google Scholar 

  14. Hallis, T. M., Zhao, Z. & Liu, H.-w. New insights into the mechanism of CDP-D-tyvelose 2-epimerase: an enzyme catalyzing epimerization at an unactivated stereocenter. J. Am. Chem. Soc. 122, 10493–10503 (2000).

    CAS  Google Scholar 

  15. Morrison, J. P., Read, J. A., Coleman, W. G. & Tanner, M. E. Dismutase activity of ADP-L-glycero-D-manno-heptose 6-epimerase: evidence for a direct oxidation/reduction mechanism. Biochemistry 44, 5907–5915 (2005).

    CAS  PubMed  Google Scholar 

  16. Major, L. L., Wolucka, B. A. & Naismith, J. H. Structure and function of GDP-mannose-3′,5′-epimerase: an enzyme which performs three chemical reactions at the same active site. J. Am. Chem. Soc. 127, 18309–18320 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mulichak, A. M., Theisen, M. J., Essigmann, B., Benning, C. & Garavito, R. M. Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc. Natl Acad. Sci. USA 96, 13097–13102 (1999).

    ADS  CAS  PubMed  Google Scholar 

  18. Sanda, S., Leustek, T., Theisen, M. J., Garavito, R. M. & Benning, C. Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J. Biol. Chem. 276, 3941–3946 (2001).

    CAS  PubMed  Google Scholar 

  19. Schutzbach, J. S. & Feingold, D. S. Biosynthesis of uridine diphosphate D-xylose IV. Mechanism of action of uridine diphosphoglucuronate carboxy-lyase. J. Biol. Chem. 245, 2476–2482 (1970).

    CAS  PubMed  Google Scholar 

  20. Davies, G. J., Gloster, T. M., & Henrissat, B. Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr. Opin. Struct. Biol. 15, 637–645 (2005).

    CAS  Google Scholar 

  21. Campbell, J. A., Davies, G. J., Bulone, V. & Henrissat, B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326, 929–942 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Coutinho, P. M., Deleury, E., Davies, G. J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317 (2003).

    CAS  PubMed  Google Scholar 

  23. Ünligil, U. M. & Rini, J. M. Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 10, 510–517 (2000).

    PubMed  Google Scholar 

  24. Bourne, Y. & Henrissat, B. Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr. Opin. Struct. Biol. 11, 593–600 (2001).

    CAS  PubMed  Google Scholar 

  25. Breton, C., Mucha, J. & Jeanneau, C. Structural and functional features of glycosyltransferases. Biochimie 83, 713–718 (2001).

    CAS  PubMed  Google Scholar 

  26. Pak, J. E. et al. X-ray crystal structure of leukocyte type core 2 β1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J. Biol. Chem. 281, 26693–26701 (2006).

    CAS  PubMed  Google Scholar 

  27. Chiu, C. P. et al. Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analogue. Nature Struct. Mol. Biol. 11, 163–170 (2004).

    CAS  Google Scholar 

  28. Murray, B. W., Takayama, S., Schultz, J. & Wong, C.-H. Mechanism and specificity of human α-1,3-fucosyltransferase V. Biochemistry 35, 11183–11195 (1996).

    CAS  PubMed  Google Scholar 

  29. Hu, Y. & Walker, S. Remarkable structural similarities between diverse glycosyltransferases. Chem. Biol. 9, 1287–1296 (2002).

    CAS  PubMed  Google Scholar 

  30. Sinnott, M. L. Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90, 1171–1202 (1990).

    CAS  Google Scholar 

  31. Gibson, R. P., Turkenburg, J. P., Charnock, S. J., Lloyd, R. & Davies, G. J. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem. Biol. 9, 1337–1346 (2002).

    CAS  PubMed  Google Scholar 

  32. Pedersen, L. C., Darden, T. A. & Negishi, M. Crystal structure of β1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA. J. Biol. Chem. 277, 21869–21873 (2002).

    CAS  PubMed  Google Scholar 

  33. Charnock, S. J. & Davies, G. J. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38, 6380–6385 (1999).

    CAS  PubMed  Google Scholar 

  34. Tarbouriech, N., Charnock, S. J. & Davies, G. J. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. J. Mol. Biol. 314, 655–661 (2001).

    CAS  PubMed  Google Scholar 

  35. Qiao, L., Murray, B. W., Shimazaki, M., Schultz, J. & Wong, C.-H. Synergistic inhibition of human α-1,3-fucosyltransferase V. J. Am. Chem. Soc. 118, 7653–7662 (1996).

    CAS  Google Scholar 

  36. Tvaroska, I., Andre, I. & Carver, J. P. Ab initio molecular orbital study of the catalytic mechanism of glycosyltransferases: description of reaction pathways and determination of transition-state structures for inverting N-acetylglucosaminyltransferases. J. Am. Chem. Soc. 122, 8762–8776 (2000).

    CAS  Google Scholar 

  37. Lairson, L. L. et al. Intermediate trapping on a mutant retaining α-galactosyltransferase identifies an unexpected aspartate residue. J. Biol. Chem. 279, 28339–28344 (2004).

    CAS  PubMed  Google Scholar 

  38. Zechel, D. L. & Withers, S. G. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33, 11–18 (2000).

    CAS  PubMed  Google Scholar 

  39. Persson, K. et al. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nature Struct. Biol. 8, 166–175 (2001).

    CAS  PubMed  Google Scholar 

  40. Pedersen, L. C. et al. Crystal structure of an α-1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J. Biol. Chem. 278, 14420–14428 (2003).

    CAS  PubMed  Google Scholar 

  41. Boix, E. et al. Structure of UDP complex of UDP-galactose:β-galactoside-α-1,3-galactosyltransferase at 1.53-Å resolution reveals a conformational change in the catalytically important C terminus. J. Biol. Chem. 276, 48608–48614 (2001).

    CAS  PubMed  Google Scholar 

  42. Boix, E., Zhang, Y., Swaminathan, G. J., Brew, K. & Acharya, K. R. Structural basis of ordered binding of donor and acceptor substrates to the retaining glycosyltransferase, α-1,3-galactosyltransferase. J. Biol. Chem. 277, 28310–28318 (2002).

    CAS  PubMed  Google Scholar 

  43. Ly, H. D., Lougheed, B., Wakarchuk, W. W. & Withers, S. G. Mechanistic studies of a retaining α-galactosyltransferase from Neisseria meningitidis. Biochemistry 41, 5075–5085 (2002).

    CAS  PubMed  Google Scholar 

  44. Zhang, Y. et al. Roles of individual enzyme-substrate interactions by α-1,3-galactosyltransferase in catalysis and specificity. Biochemistry 42, 13512–13521 (2003).

    CAS  PubMed  Google Scholar 

  45. Borisova, S. A. et al. Substrate specificity of the macrolide-glycosylating enzyme pair DesVII/DesVIII: opportunities, limitations, and mechanistic hypotheses. Angew. Chem. Int. Ed. Engl. 45, 2748–2753 (2006).

    CAS  PubMed  Google Scholar 

  46. Kao, C.-L., Borisova, S. A., Kim, H. J., & Liu, H.-w. Linear aglycones are the substrates for glycosyltransferase DesVII in methymycin biosynthesis: analysis and implications. J. Am. Chem. Soc. 128, 5606–5607 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan, Y. et al. In vitro reconstitution of EryCIII activity for the preparation of unnatural macrolides. J. Am. Chem. Soc. 127, 14128–14129 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, W. et al. AknT is an activating protein for the glycosyltransferase AknS in L-aminodeoxysugar transfer to the aglycone of aclacinomycin A. Chem. Biol. 12, 527–534 (2005).

    CAS  PubMed  Google Scholar 

  49. Imerpiali, B. & Tai, V. W. -F. in Carbohydrate-based Drug Discovery Vol. 1 (ed. Wong, C. -H.) 281–303 (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  50. Onaka, H., Taniguchi, S.-i., Igarashi, Y. & Furumai, T. Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci. Biotechnol. Biochem. 67, 127–138 (2003).

    CAS  PubMed  Google Scholar 

  51. Salas, A. P. et al. Deciphering the late steps in the biosynthesis of the anti-tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Mol. Microbiol. 58, 17–27 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao, Q., Zhang, C., Blanchard, S. & Thorson, J. S. Deciphering indolocarbazole and enediyne aminodideoxypentose biosynthesis through comparative genomics: insights from the AT2433 biosynthetic locus. Chem. Biol. 13, 733–743 (2006).

    CAS  PubMed  Google Scholar 

  53. Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002).

    ADS  CAS  PubMed  Google Scholar 

  54. Hultin, P. G. Bioactive C-glycosides from bacterial secondary metabolism. Curr. Topics Med. Chem. 5, 1299–1331 (2005).

    CAS  Google Scholar 

  55. Bililign, T., Hyun, C.-G., Williams, J. S., Czisny, A. M. & Thorson, J. S. The hedamycin locus implicates a novel aromatic PKS priming mechanism. Chem. Biol. 11, 959–969 (2004).

    CAS  PubMed  Google Scholar 

  56. Halkier, B. A. & Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303–333 (2006).

    CAS  PubMed  Google Scholar 

  57. Grubb, C. D. et al. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J. 40, 893–908 (2004).

    CAS  PubMed  Google Scholar 

  58. Thiericke, R. & Rohr, J. Biological variation of microbial metabolites by precursor-directed biosynthesis. Nat. Prod. Rep. 10, 265–289 (1993).

    CAS  PubMed  Google Scholar 

  59. Weist, S. & Sussmuth, R. D. Mutational biosynthesis — a tool for the generation of structural diversity in the biosynthesis of antibiotics. Appl. Microbiol. Biotech. 68, 141–150 (2005).

    CAS  Google Scholar 

  60. Solenberg, P. J. et al. Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem. Biol. 4, 195–202 (1997).

    CAS  PubMed  Google Scholar 

  61. Madduri, K. et al. Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nature Biotechnol. 16, 69–74 (1998).

    CAS  Google Scholar 

  62. Zhao, L., Sherman, D. H. & Liu, H.-w. Biosynthesis of desosamine: construction of a new methymycin/neomethymycin analogue by deletion of a desoamine biosynthetic gene. J. Am. Chem. Soc. 120, 10256–10257 (1998).

    CAS  Google Scholar 

  63. Zhao, L., Que, N. L. S., Xue, Y., Sherman, D. H. & Liu, H.-w. Mechansitic studies of desosamine biosynthesis: C-4 deoxygenation precedes C-3 transamination. J. Am. Chem. Soc. 120, 12159–12160 (1998).

    CAS  Google Scholar 

  64. Zhao, L., Borisova, S., Yeung, S. M. & Liu, H. Study of C-4 deoxygenation in the biosynthesis of desosamine: evidence implicating a novel mechanism. J. Am. Chem. Soc. 123, 7909–7910 (2001).

    CAS  PubMed  Google Scholar 

  65. Borisova, S. A., Zhao, L., Sherman, D. H. & Liu, H. W. Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moiety. Org. Lett. 1, 133–136 (1999).

    CAS  PubMed  Google Scholar 

  66. Yamase, H., Zhao, L. & Liu, H.-w. Engineering a hybrid sugar biosynthetic pathway: production of L-rhamnose and its implication on dihydrostreptose biosynthesis. J. Am. Chem. Soc. 122, 12397–12398 (2000).

    CAS  Google Scholar 

  67. Melancon, C. E., Yu, W. L. & Liu, H. W. TDP-mycaminose biosynthetic pathway revised and conversion of desosamine pathway to mycaminose pathway with one gene. J. Am. Chem. Soc. 127, 12240–12241 (2005).

    CAS  PubMed  Google Scholar 

  68. Tang, L. & McDaniel, R. Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem. Biol. 8, 547–555 (2001).

    CAS  PubMed  Google Scholar 

  69. Decker, H., Haag, S., Udvarnoki, G. & Rohr, J. Novel genetically engineered tetracenomycins. Angew. Chem. Int. Ed. Engl. 34, 1107–1110 (1995).

    CAS  Google Scholar 

  70. Wohlert, S.-E. et al. Novel hybrid tetracenomycins through combinatorial biosynthesis using a glycosyltransferase encoded by the elm genes in cosmid 16F4 and which shows broad sugar substrate specificity. J. Am. Chem. Soc. 120, 10596–10601 (1998).

    CAS  Google Scholar 

  71. Rodriguez, L. et al. Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms: a tool to produce novel glycosylated bioactive compounds. Chem. Biol. 9, 721–729 (2002).

    CAS  PubMed  Google Scholar 

  72. Fischer, C. et al. Digitoxosyltetracenomycin C and glucosyltetracenomycin C, two novel elloramycin analogues obtained by exploring the sugar donor substrate flexibility of glycosyltransferase ElmGT. J. Nat. Prod. 65, 1685–1689 (2002).

    CAS  PubMed  Google Scholar 

  73. Lombo, F. et al. Engineering biosynthetic pathways for deoxysugars: branched-chain sugar pathways and derivatives from the antitumor tetracenomycin. Chem. Biol. 11, 1709–1718 (2004).

    CAS  PubMed  Google Scholar 

  74. Perez, M. et al. Combining sugar biosynthesis genes for the generation of L- and D-amicetose and formation of two novel antitumor tetracenomycins. Chem. Commun. (Camb.) 12, 1604–1606 (2005).

    Google Scholar 

  75. Zhang, C. et al. RebG- and RebM-catalyzed indolocarbazole diversification. ChemBioChem 7, 795–804 (2006).

    CAS  PubMed  Google Scholar 

  76. Sanchez, C. et al. Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc. Natl Acad. Sci. USA 102, 461–466 (2005).

    ADS  CAS  PubMed  Google Scholar 

  77. Trefzer, A. et al. Elucidation of the function of two glycosyltransferase genes (lanGT1 and lanGT4) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics. Chem. Biol. 8, 1239–1252 (2001).

    CAS  PubMed  Google Scholar 

  78. Torkkell, S. et al. The entire nogalamycin biosynthetic gene cluster of Streptomyces nogalater: characterization of a 20-kb DNA region and generation of hybrid structures. Mol. Gen. Genet. 266, 276–288 (2001).

    CAS  Google Scholar 

  79. Wohlert, S.-E. et al. Insights about the biosynthesis of the avermectin deoxysugar L-oleandrose through heterologous expression of Streptomyces avermitilis deoxysugar genes in Streptomyces lividans. Chem. Biol. 8, 681–700 (2001).

    CAS  PubMed  Google Scholar 

  80. Gaisser, S. et al. A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea. Mol. Microbiol. 36, 391–401 (2000).

    CAS  PubMed  Google Scholar 

  81. Hoffmeister, D. et al. Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. Chem. Biol. 9, 287–295 (2002).

    CAS  PubMed  Google Scholar 

  82. Hoffmeister, D., Ichinose, K. & Bechthold, A. Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. Chem. Biol. 8, 557–567 (2001).

    CAS  PubMed  Google Scholar 

  83. Love, K. R., Swoboda, J. G., Noren, C. J. & Walker, S. Enabling glycosyltransferase evolution: a facile substrate-attachment strategy for phage-display enzyme evolution. ChemBioChem 7, 753–756 (2006).

    CAS  PubMed  Google Scholar 

  84. Aharoni, A. et al. High-throughput screening methodology for the directed evolution of glycosyltransferases. Nature Methods 3, 609–614 (2006).

    CAS  PubMed  Google Scholar 

  85. Mulichak, A. M., Losey, H. C., Walsh, C. T. & Garavito, R. M. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure 9, 547–557 (2001).

    CAS  PubMed  Google Scholar 

  86. Mulichak, A. M. et al. Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc. Natl Acad. Sci. USA 100, 9238–9243 (2003).

    ADS  CAS  PubMed  Google Scholar 

  87. Mulichak, A. M., Lu, W., Losey, H. C., Walsh, C. T. & Garavito, R. M. Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptor and nucleotide ligands. Biochemistry 43, 5170–5180 (2004).

    CAS  PubMed  Google Scholar 

  88. Offen, W. et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25, 1396–1405 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fu, X. et al. Antibiotic optimization via in vitro glycorandomization. Nature Biotechnol. 21, 1467–1469 (2003).

    CAS  Google Scholar 

  90. Albermann, C. et al. Substrate specificity of NovM: implications for novobiocin biosynthesis and glycorandomization. Org. Lett. 5, 933–936 (2003).

    CAS  PubMed  Google Scholar 

  91. Zhang, C. et al. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313, 1291–1294 (2006).

    ADS  CAS  PubMed  Google Scholar 

  92. Minami, A., Kakinuma, K. & Eguchi, T. Aglycon switch approach toward unnatural glycosides from natural glycoside with glycosyltransferase VinC. Tetrahedr. Lett. 46, 6187–6190 (2005).

    CAS  Google Scholar 

  93. Melancon, C. E., Thibodeaux, C. J. & Liu, H.-w. Glyco-stripping and glyco-swapping. ACS Chem. Biol. 1, 499–504 (2006).

    CAS  PubMed  Google Scholar 

  94. Grison, C., Petek, S., Finance, C. & Coutrot, P. Synthesis and antibacterial activity of mechanism-based inhibitors of KDO8P synthase and DAH7P synthase. Carbohydrate Res. 340, 529–537 (2005).

    CAS  Google Scholar 

  95. Carlson, E. E., May, J. F. & Kiessling, L. L. Chemical probes of UDP-galactopyranose mutase. Chem. Biol. 13, 825–837 (2006).

    CAS  PubMed  Google Scholar 

  96. van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18, 503–519 (2001).

    CAS  PubMed  Google Scholar 

  97. Zoeiby, A. E., Sanschagrin, F. & Levesque, R. C. Structure and function of the Mur enzymes development of novel inhibitors. Mol. Microbiol. 47, 1–12 (2003).

    PubMed  Google Scholar 

  98. Lovering, A. L., de Castro, L. H., Lim, D. & Strynadka, N. C. J. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315, 1402–1405 (2007).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health for their generous support of this work.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Note added in proof: Lovering et al. recently demonstrated that the glycosyltransferase domain of a bifunctional glycosyltransferase/transpeptidase enzyme involved in peptidoglycan biosynthesis in Staphylococcus aureus adopts a structural fold that is distinct from that of the GT-A and GT-B glycosyltransferase families, making it the first member of a new family of glycosyltransferases to be structurally characterized98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thibodeaux, C., Melançon, C. & Liu, Hw. Unusual sugar biosynthesis and natural product glycodiversification. Nature 446, 1008–1016 (2007). https://doi.org/10.1038/nature05814

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05814

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing