Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A dynamic role for the mushroom bodies in promoting sleep in Drosophila

Abstract

The fruitfly, Drosophila melanogaster, exhibits many of the cardinal features of sleep, yet little is known about the neural circuits governing its sleep1. Here we have performed a screen of GAL4 lines expressing a temperature-sensitive synaptic blocker shibirets1 (ref. 2) in a range of discrete neural circuits, and assayed the amount of sleep at different temperatures. We identified three short-sleep lines at the restrictive temperature with shared expression in the mushroom bodies, a neural locus central to learning and memory3. Chemical ablation of the mushroom bodies also resulted in reduced sleep. These studies highlight a central role for the mushroom bodies in sleep regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sleep in short-sleep GAL4 lines.
Figure 2: Short-sleep GAL4 lines share expression within the MB.
Figure 3: Sleep intensity is reduced, and activity is not correlated with the short-sleep phenotype.
Figure 4: Mushroom body ablation reduces sleep.

Similar content being viewed by others

References

  1. Hendricks, J. C. & Sehgal, A. Why a fly? Using Drosophila to understand the genetics of circadian rhythms and sleep. Sleep 27, 334–342 (2004)

    Article  Google Scholar 

  2. Kitamoto, T. Conditional modification of behaviour in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001)

    Article  CAS  Google Scholar 

  3. Davis, R. L. Olfactory learning. Neuron 44, 31–48 (2004)

    Article  CAS  Google Scholar 

  4. Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000)

    Article  CAS  Google Scholar 

  6. Hendricks, J. C., Kirk, D., Panckeri, K., Miller, M. S. & Pack, A. I. Modafinil maintains waking in the fruit fly Drosophila melanogaster. Sleep 26, 139–146 (2003)

    Article  Google Scholar 

  7. van Swinderen, B., Nitz, D. A. & Greenspan, R. J. Uncoupling of brain activity from movement defines arousal states in Drosophila. Curr. Biol. 14, 81–87 (2004)

    Article  CAS  Google Scholar 

  8. Nitz, D. A., van Swinderen, B., Tononi, G. & Greenspan, R. J. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12, 1934–1940 (2002)

    Article  CAS  Google Scholar 

  9. Huber, R. et al. Sleep homeostasis in Drosophila melanogaster. Sleep 27, 628–639 (2004)

    Article  Google Scholar 

  10. Shaw, P. J., Tononi, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Hendricks, J. C. et al. A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nature Neurosci. 4, 1108–1115 (2001)

    Article  CAS  Google Scholar 

  12. Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Kosaka, T. & Ikeda, K. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol. 14, 207–225 (1983)

    Article  CAS  Google Scholar 

  14. van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991)

    Article  ADS  CAS  Google Scholar 

  15. Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991)

    Article  ADS  CAS  Google Scholar 

  16. Koenig, J. H., Saito, K. & Ikeda, K. Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster. J. Cell Biol. 96, 1517–1522 (1983)

    Article  CAS  Google Scholar 

  17. Armstrong, J. D. & Kaiser, K. Flytrap lines. www.fly-trap.org (1996).

  18. Pascual, A. & Preat, T. Localization of long-term memory within the Drosophila mushroom body. Science 294, 1115–1117 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Zars, T., Fischer, M., Schulz, R. & Heisenberg, M. Localization of a short-term memory in Drosophila. Science 288, 672–675 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Martin, J. R., Ernst, R. & Heisenberg, M. Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn. Mem. 5, 179–191 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwaerzel, M., Heisenberg, M. & Zars, T. Extinction antagonizes olfactory memory at the subcellular level. Neuron 35, 951–960 (2002)

    Article  CAS  Google Scholar 

  22. Sapp, R. J., Christianson, J. & Stark, W. S. Turnover of membrane and opsin in visual receptors of normal and mutant Drosophila. J. Neurocytol. 20, 597–608 (1991)

    Article  CAS  Google Scholar 

  23. Hendricks, J. C. et al. Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J. Biol. Rhythms 18, 12–25 (2003)

    Article  CAS  Google Scholar 

  24. de Belle, J. S. & Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692–695 (1994)

    Article  ADS  CAS  Google Scholar 

  25. Helfrich-Forster, C., Wulf, J. & de Belle, J. S. Mushroom body influence on locomotor activity and circadian rhythms in Drosophila melanogaster. J. Neurogenet. 16, 73–109 (2002)

    Article  Google Scholar 

  26. Li, W., Ohlmeyer, J. T., Lane, M. E. & Kalderon, D. Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell 80, 553–562 (1995)

    Article  CAS  Google Scholar 

  27. Belgacem, Y. H. & Martin, J. R. Neuroendocrine control of a sexually dimorphic behaviour by a few neurons of the pars intercerebralis in Drosophila. Proc. Natl. Acad. Sci. USA 99, 15154–15158 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Siegmund, T. & Korge, G. Innervation of the ring gland of Drosophila melanogaster. J. Comp. Neurol. 431, 481–491 (2001)

    Article  CAS  Google Scholar 

  29. Rechtschaffen, A., Gilliland, M. A., Bergmann, B. M. & Winter, J. B. Physiological correlates of prolonged sleep deprivation in rats. Science 221, 182–184 (1983)

    Article  ADS  CAS  Google Scholar 

  30. Cirelli, C. Searching for sleep mutants of Drosophila melanogaster. Bioessays 25, 940–949 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Villar, A. Schroeder, B. Finn, D. Hanrahan, A. Majeed and A. Phillips for assistance with PCR genotyping (M.V.), confocal imaging (A.S., B.F.), initial screening (D.H., A.M.) and designing data analysis software (A.P.); C. Cirelli and G. Tononi and their laboratories for advice on mechanical sleep deprivation; P. Shaw, T. Zars, M. Rosbash and E. Smith for comments; and B. Joiner and A. Sehgal for communicating results before publication. This work was supported by a Burroughs Wellcome Career Award in the Biomedical Sciences and by the NIH (R.A.). Author Contributions J.L.P. completed all experiments and analyses, with assistance on lifespan, PCR genotyping and general fly maintenance from J.J.McG., and on the development and application of behaviour data analysis software for measures of sleep intensity (the Drosophila Activity Monitor Data Crunching Macro) from K.P.K. J.L.P. and R.A. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Allada.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Methods, Supplementary Table 1 and Supplementary Figures 1–5. (PDF 1356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitman, J., McGill, J., Keegan, K. et al. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753–756 (2006). https://doi.org/10.1038/nature04739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04739

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing