Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RecBCD enzyme is a bipolar DNA helicase

Abstract

Escherichia coli RecBCD is a heterotrimeric helicase/nuclease that catalyses a complex reaction in which double-strand breaks in DNA are processed for repair by homologous recombination1. For some time it has been clear that the RecB subunit possesses a 3′ → 5′ DNA helicase activity2,3,4, which was thought to drive DNA translocation and unwinding in the RecBCD holoenzyme. Here we show that purified RecD protein is also a DNA helicase, but one that possesses a 5′ → 3′ polarity. We also show that the RecB and RecD helicases are both active in intact RecBCD, because the enzyme remains capable of processive DNA unwinding when either of these subunits is inactivated by mutation. These findings point to a bipolar translocation model for RecBCD in which the two DNA helicases are complementary, travelling with opposite polarities, but in the same direction, on each strand of the antiparallel DNA duplex. This bipolar motor organization helps to explain various biochemical properties of RecBCD, notably its exceptionally high speed and processivity, and offers a mechanistic insight into aspects of RecBCD function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purified hisRecD protein is a ssDNA-dependent ATPase.
Figure 2: hisRecD is a 5′ → 3′ DNA helicase.
Figure 3: Reconstitution of the Chi-specific cleavage activity of RecBCD from purified RecBC and hisRecD proteins.
Figure 4: The RecB and RecD helicase subunits are both active in the RecBCD holoenzyme.
Figure 5: A bipolar DNA helicase translocation model.

Similar content being viewed by others

References

  1. Arnold, D. A. & Kowalczykowski, S. C. in Encyclopedia of Life Sciences http://www.els.net (Nature Publishing Group, London, 1999)

    Google Scholar 

  2. Phillips, R. J., Hickleton, D. C., Boehmer, P. E. & Emmerson, P. T. The RecB protein of Escherichia coli translocates along single-stranded DNA in the 3′ to 5′ direction: a proposed ratchet mechanism. Mol. Gen. Genet. 254, 319–329 (1997)

    CAS  PubMed  Google Scholar 

  3. Yu, M., Souaya, J. & Julin, D. A. The 30-kDa C-terminal domain of the RecB protein is critical for the nuclease activity, but not the helicase activity, of the RecBCD enzyme from Escherichia coli. Proc. Natl Acad. Sci. USA 95, 981–986 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bianco, P. R. & Kowalczykowski, S. C. Step size measurements on the translocation mechanism of the RecBC DNA helicase. Nature 405, 368–372 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Dixon, D. A. & Kowalczykowski, S. C. The recombination hotspot Chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73, 87–96 (1993)

    Article  CAS  PubMed  Google Scholar 

  6. Bianco, P. R. & Kowalczykowski, S. C. The recombination hotspot Chi is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5′-GCTGGTGG-3′. Proc. Natl Acad. Sci. USA 94, 6706–6711 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson, D. G. & Kowalczykowski, S. C. The recombination hot spot Chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev. 11, 571–581 (1997)

    Article  CAS  PubMed  Google Scholar 

  8. Anderson, D. G. & Kowalczykowski, S. C. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a Chi-regulated manner. Cell 90, 77–86 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. & Rehrauer, W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465 (1984)

    Article  Google Scholar 

  10. Zhang, X. J. & Julin, D. A. Isolation and characterization of the C-terminal nuclease domain from the RecB protein of Escherichia coli. Nucleic Acids Res. 27, 4200–4207 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roman, L. J., Eggleston, A. K. & Kowalczykowski, S. C. Processivity of the DNA helicase activity of Escherichia coli RecBCD enzyme. J. Biol. Chem. 267, 4207–4214 (1992)

    Article  CAS  PubMed  Google Scholar 

  12. Chen, H. W., Ruan, B., Yu, M., Wang, J. & Julin, D. A. The RecD subunit of the RecBCD enzyme from Escherichia coli is a single-stranded DNA-dependent ATPase. J. Biol. Chem. 272, 10072–10079 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. Boehmer, P. E. & Emmerson, P. T. Escherichia coli RecBCD enzyme: inducible overproduction and reconstitution of the ATP-dependent deoxyribonuclease from purified subunits. Gene 102, 1–6 (1991)

    Article  CAS  PubMed  Google Scholar 

  14. Chen, H.-W., Randle, D. E., Gabbidon, M. & Julin, D. A. Functions of the ATP hydrolysis subunits (RecB and RecD) in the nuclease reactions catalyzed by the RecBCD enzyme from Escherichia coli. J. Mol. Biol. 278, 89–104 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, A. F. & Smith, G. R. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature XXX, XXX–XXX (2003)

    Google Scholar 

  16. Lahue, E. E. & Matson, S. W. Escherichia coli DNA helicase I catalyzes a unidirectional and highly processive unwinding reaction. J. Biol. Chem. 263, 3208–3215 (1998)

    Article  Google Scholar 

  17. Jongeneel, C. V., Formosa, T. & Alberts, B. M. Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein. J. Biol. Chem. 259, 12925–12932 (1984)

    Article  CAS  PubMed  Google Scholar 

  18. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Morris, P. D. & Raney, K. D. DNA helicases displace streptavidin from biotin-labeled oligonucleotides. Biochemistry 38, 5164–5171 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Dillingham, M. S., Wigley, D. B. & Webb, M. R. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39, 205–212 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Dillingham, M. S., Wigley, D. B. & Webb, M. R. Direct measurement of single-stranded DNA translocation by PcrA helicase using the fluorescent base analogue 2-aminopurine. Biochemistry 41, 643–651 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Singleton, M. R. & Wigley, D. B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriology 184, 1819–1826 (2002)

    Article  CAS  Google Scholar 

  23. Ganesan, S. & Smith, G. R. Strand-specific binding to duplex DNA ends by the subunits of the Escherichia coli RecBCD enzyme. J. Mol. Biol. 229, 67–78 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. Korangy, F. & Julin, D. A. Kinetics and processivity of ATP hydrolysis and DNA unwinding by the RecBC enzyme from Escherichia coli. Biochemistry 32, 4873–4880 (1993)

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, A. F. & Smith, G. R. Unwinding and rewinding of DNA by the RecBC enzyme. Cell 22, 447–457 (1980)

    Article  CAS  PubMed  Google Scholar 

  26. van Brabant, A. J., Stan, R. & Ellis, N. A. DNA helicases, genomic instability, and human genetic disease. Annu. Rev. Genom. Hum. Genet. 1, 409–459 (2000)

    Article  CAS  Google Scholar 

  27. Korangy, F. & Julin, D. A. Alteration by site-directed mutagenesis of the conserved lysine residue in the ATP-binding consensus sequence of the RecD subunit of the Escherichia coli RecBCD enzyme. J. Biol. Chem. 267, 1727–1732 (1991)

    Article  Google Scholar 

  28. Hsieh, S. & Julin, D. A. Alteration by site-directed mutagenesis of the conserved lysine residue in the consensus ATP-binding sequence of the RecB protein of Escherichia coli. Nucleic Acids Res. 20, 5647–5653 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kreuzer, K. N. & Jongeneel, C. V. Escherichia coli phage T4 topoisomerase. Methods Enzymol. 100, 144–160 (1983)

    Article  CAS  PubMed  Google Scholar 

  30. Arnold, D. A., Bianco, P. R. & Kowalczykowski, S. C. The reduced levels of Chi recognition exhibited by the RecBC1004D enzyme reflect its recombination defect in vivo. J. Biol. Chem. 273, 16476–16486 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Handa and K. Morimatsu for preparative work; D. Julin for his generosity; A. Taylor and G. Smith for discussions and for sharing their unpublished data15; and the members of the Kowalczykowski laboratory for their critical reading of the manuscript. This work was supported by a Wellcome Trust Travelling Research Fellowship to M.S.D., an American Cancer Society Postdoctoral Fellowship to M.S. and by an NIH grant to S.C.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Kowalczykowski.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillingham, M., Spies, M. & Kowalczykowski, S. RecBCD enzyme is a bipolar DNA helicase. Nature 423, 893–897 (2003). https://doi.org/10.1038/nature01673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01673

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing