Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate

Abstract

Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed1,2 in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because they have higher intrinsic resistance to certain small errors and might enable faster gate implementation. Here we demonstrate a universal geometric π-phase gate between two beryllium ion-qubits, based on coherent displacements induced by an optical dipole force. The displacements depend on the internal atomic states; the motional state of the ions is unimportant provided that they remain in the regime in which the force can be considered constant over the extent of each ion's wave packet. By combining the gate with single-qubit rotations, we have prepared ions in an entangled Bell state with 97% fidelity—about six times better than in a previous experiment3 demonstrating a universal gate between two ion-qubits. The particular properties of the gate make it attractive for a multiplexed trap architecture4,5 that would enable scaling to large numbers of ion-qubits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase space representation of the stretch-mode amplitude of two trapped ions.
Figure 2: State evolution upon displacement.
Figure 3: Parity ([P↓↓ + P↑↑] - [P↑↓ + P↓↑]) after producing the maximally entangled state.

Similar content being viewed by others

References

  1. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999)

    Article  ADS  Google Scholar 

  3. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998)

    Article  CAS  Google Scholar 

  5. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Roos, Ch. et al. Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett. 83, 4713–4716 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 02231 (2000)

    Article  Google Scholar 

  9. DeVoe, R. G. Elliptical ion traps and trap arrays for quantum computation. Phys. Rev. A 58, 910–914 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Rowe, M. A. et al. Transport of quantum states and separation of ions in a dual rf ion trap. Quant. Inf. Comput. 4, 257–271 (2002)

    MATH  Google Scholar 

  12. Carruthers, P. & Nieto, M. M. Coherent states and the forced quantum oscillator. Am. J. Phys. 7, 537–544 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  13. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, Berlin, 1994)

    Book  Google Scholar 

  14. Monroe, C., Meekhof, D. M., King, B. E. & Wineland, D. J. A “Schrödinger Cat” superposition state of an atom. Science 272, 1131–1136 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Myatt, C. J. et al. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Milburn, G. J., Schneider, S. & James, D. F. Ion trap quantum computing with warm ions. Fortschr. Physik 48, 801–810 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Wang, X., Sørensen, A. & Mølmer, K. Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907–3910 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Wineland, D. J. et al. Quantum information processing with trapped ions. Preprint quant-ph/0212079 available at 〈http://arXiv.org〉 (2002).

  19. King, B. E. et al. Cooling the collective motion of trapped ions to initialize a quantum register. Phys. Rev. Lett. 81, 1525–1528 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Steane, A. et al. Speed of ion trap quantum information processors. Phys. Rev. A 62, 042305 (2000)

    Article  ADS  Google Scholar 

  22. Steane, A. Overhead and noise threshold of fault-tolerant quantum error correction. Preprint quant-ph/0207119 available at 〈http://arXiv.org〉 (2002).

Download references

Acknowledgements

We thank J. Chiaverini, T. Schätz and A. Steane for comments on the manuscript. This work was supported by the US National Security Agency (NSA), the Advanced Research and Development Activity (ARDA). This is a publication of a US government agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Wineland.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibfried, D., DeMarco, B., Meyer, V. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003). https://doi.org/10.1038/nature01492

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01492

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing