Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the human angiotensin-converting enzyme–lisinopril complex

Abstract

Angiotensin-converting enzyme (ACE) has a critical role in cardiovascular function by cleaving the carboxy terminal His-Leu dipeptide from angiotensin I to produce a potent vasopressor octapeptide, angiotensin II. Inhibitors of ACE are a first line of therapy for hypertension, heart failure, myocardial infarction and diabetic nephropathy. Notably, these inhibitors were developed without knowledge of the structure of human ACE, but were instead designed on the basis of an assumed mechanistic homology with carboxypeptidase A1. Here we present the X-ray structure of human testicular ACE and its complex with one of the most widely used inhibitors, lisinopril (N2-[(S)-1-carboxy-3-phenylpropyl]-l-lysyl-l-proline; also known as Prinivil or Zestril), at 2.0 Å resolution. Analysis of the three-dimensional structure of ACE shows that it bears little similarity to that of carboxypeptidase A, but instead resembles neurolysin2 and Pyrococcus furiosus carboxypeptidase3—zinc metallopeptidases with no detectable sequence similarity to ACE. The structure provides an opportunity to design domain-selective ACE inhibitors that may exhibit new pharmacological profiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of tACE structure.
Figure 2: Details of the active site.
Figure 3: Comparison of tACE (a) and neurolysin (b) folds.

Similar content being viewed by others

References

  1. Cushman, D. W., Cheung, H. S., Sabo, E. F. & Ondetti, M. A. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16, 5484–5491 (1977)

    Article  CAS  Google Scholar 

  2. Brown, C. K. et al. Structure of neurolysin reveals a deep channel that limits substrate access. Proc. Natl Acad. Sci. USA 98, 3127–3132 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Arndt, J. W. et al. Crystal structure of a novel carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. Structure 10, 215–224 (2002)

    Article  CAS  Google Scholar 

  4. Soubrier, F. et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc. Natl Acad. Sci. USA 85, 9386–9390 (1988)

    Article  ADS  CAS  Google Scholar 

  5. Williams, T. A., Corvol, P. & Soubrier, F. Identification of two active site residues in human angiotensin I-converting enzyme. J. Biol. Chem. 269, 29430–29434 (1994)

    CAS  PubMed  Google Scholar 

  6. Wei, L., Clauser, E., Alhenc-Gelas, F. & Corvol, P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J. Biol. Chem. 267, 13398–13405 (1992)

    CAS  PubMed  Google Scholar 

  7. Junot, C. et al. RXP 407, a selective inhibitor of the N-domain of angiotensin I-converting enzyme, blocks in vivo the degradation of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro with no effect on angiotensin I hydrolysis. J. Pharmacol. Exp. Ther. 297, 606–611 (2001)

    CAS  PubMed  Google Scholar 

  8. Esther, C. R. et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J. Clin. Invest. 99, 2375–2385 (1997)

    Article  CAS  Google Scholar 

  9. Ehlers, M. R. W., Fox, E. A., Strydom, D. J. & Riordan, J. F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc. Natl Acad. Sci. USA 86, 7741–7745 (1989)

    Article  ADS  CAS  Google Scholar 

  10. Yu, X. C. et al. Identification of N-linked glycosylation sites in human testis angiotensin-1 converting enzyme and expression of an active deglycosylated form. J. Biol. Chem. 272, 3511–3519 (1997)

    Article  CAS  Google Scholar 

  11. Chubb, A. J., Schwager, S. L. U., Woodman, Z. L., Ehlers, M. R. W., Sturrock, E. D. . Biochem. Biophys. Res. Commun. 297, 1225–1230 (2002)

    Article  CAS  Google Scholar 

  12. Ehlers, M. R. W. & Riordan, J. F. Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry 30, 7118–7126 (1991)

    Article  CAS  Google Scholar 

  13. Bünning, P. & Riordan, J. F. Activation of angiotensin converting enzyme by monovalent anions. Biochemistry 22, 110–116 (1983)

    Article  Google Scholar 

  14. Shapiro, R., Holmquist, B. & Riordan, J. F. Anion activation of angiotensin converting enzyme: dependence on nature of substrate. Biochemistry 22, 3850–3857 (1983)

    Article  CAS  Google Scholar 

  15. Jaspard, E., Wei, L. & Alhenc-Gelas, F. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (Kininase II). J. Biol. Chem. 268, 9496–9503 (1993)

    CAS  PubMed  Google Scholar 

  16. Liu, X., Fernandez, M., Wouters, M. A., Heyberger, S. & Husain, A. Arg-1098 is critical for the chloride dependence of human angiotensin-1 converting enzyme C-domain catalytic activity. J. Biol. Chem. 276, 33518–33525 (2001)

    Article  CAS  Google Scholar 

  17. Holm, L. & Sander, C. Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 27, 244–247 (1999)

    Article  CAS  Google Scholar 

  18. Corvol, P. & Williams, T. A. in Handbook of Proteolytic Enzymes (eds Barrett, A. J., Rawlings, N. D. & Woessner, J. F.) 1066–1076 (Academic, London, 1998)

    Google Scholar 

  19. Skidgel, R. A., Engelbrecht, S., Johnson, A. R. & Erdos, E. G. Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5, 769–776 (1984)

    Article  CAS  Google Scholar 

  20. Patchett, A. A. et al. A new class of angiotensin-converting enzyme inhibitors. Nature 288, 280–283 (1980)

    Article  ADS  CAS  Google Scholar 

  21. Patchett, A. A. & Cordes, E. H. The design and properties of N-carboxyalkyldipeptide inhibitors of angiotensin converting enzyme. Adv. Enzymol. 57, 1–84 (1985)

    CAS  PubMed  Google Scholar 

  22. Bernstein, K. E., Welsh, S. L. & Inman, J. K. A deeply recessed active site in angiotensin converting enzyme is indicated from the binding characteristic of biotin-spacer-inhibitor reagents. Biochem. Biophys. Res. Commun. 167, 310–317 (1990)

    Article  CAS  Google Scholar 

  23. Bunning, P., Holmquist, B. & Riordan, J. F. Functional residues at the active site of angiotensin converting enzyme. Biochem. Biophys. Res. Commun. 83, 1442–1449 (1978)

    Article  CAS  Google Scholar 

  24. Otwinowski, M. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  25. Collaborative computational project Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  26. De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameters refinement in the MIR and MAD methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  Google Scholar 

  27. Abrahams, J. P. & Leslie, A. G. W. Methods used in structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 110–119 (1996)

    Article  Google Scholar 

  28. Brünger, A. T. et al. Crystallography & N. M. R. system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  29. Merritt, E. A. & Bacon, D. J. Raster 3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)

    Article  CAS  Google Scholar 

  30. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrogen atoms. Proteins Struct. Funct. Genet. 11, 281–296 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust grant to K.R.A., a Collaborative Research Initiative Grant to E.D.S. and K.R.A., and a National Research Foundation Grant to E.D.S. We thank M. Walsh, H. Belrahli and A. Thompson at ESRF, and L. Duke, J. Nicholson, M. McDonald, P. Rizkallah and M. Papiz at SRS for their help during X-ray data collection. We also thank R. Shapiro, J. Riordan and M. Ehlers for constructive criticism of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward D. Sturrock or K. Ravi Acharya.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natesh, R., Schwager, S., Sturrock, E. et al. Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature 421, 551–554 (2003). https://doi.org/10.1038/nature01370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01370

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing