Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lithium suppression of tau induces brain iron accumulation and neurodegeneration

Abstract

Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer’s disease), and may explain lithium-associated motor symptoms in susceptible patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cade JF . Lithium salts in the treatment of psychotic excitement. Med J Aust 1949; 2: 349–352.

    CAS  PubMed  Google Scholar 

  2. Geddes JR, Goodwin GM, Rendell J, Azorin JM, Cipriani A, Ostacher MJ et al. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomised open-label trial. Lancet 2010; 375: 385–395.

    Article  PubMed  Google Scholar 

  3. Phiel CJ, Klein PS . Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 2001; 41: 789–813.

    Article  CAS  PubMed  Google Scholar 

  4. Grof P, Müller-Oerlinghausen B . A critical appraisal of lithium's efficacy and effectiveness: the last 60 years. Bipolar Disord 2009; 11 (Suppl 2): 10–19.

    Article  CAS  PubMed  Google Scholar 

  5. Lei P, Ayton S, Bush AI, Adlard PA . GSK-3 in neurodegenerative diseases. Int J Alzheimers Dis 2011; 2011: 189246.

    PubMed  PubMed Central  Google Scholar 

  6. Ghadirian AM, Annable L, Bélanger MC, Chouinard G . A cross-sectional study of parkinsonism and tardive dyskinesia in lithium-treated affective disordered patients. J Clin Psychiatry 1996; 57: 22–28.

    CAS  PubMed  Google Scholar 

  7. Dallocchio C, Mazzarello P . A case of Parkinsonism due to lithium intoxication: treatment with Pramipexole. J Clin Neurosci 2002; 9: 310–311.

    Article  PubMed  Google Scholar 

  8. Shopsin B, Gershon S . Cogwheel rigidity related to lithium maintenance. Am J Psychiatry 1975; 132: 536–538.

    Article  CAS  PubMed  Google Scholar 

  9. Reches A, Tietler J, Lavy S . Parkinsonism due to lithium carbonate poisoning. Arch Neurol 1981; 38: 471.

    Article  CAS  PubMed  Google Scholar 

  10. Apte SN, Langston JW . Permanent neurological deficits due to lithium toxicity. Ann Neurol 1983; 13: 453–455.

    Article  CAS  PubMed  Google Scholar 

  11. Lang AE . Lithium and parkinsonism. Ann Neurol 1984; 15: 214.

    Article  CAS  PubMed  Google Scholar 

  12. Muthane UB, Prasad BN, Vasanth A, Satishchandra P . Tardive Parkinsonism, orofacial dyskinesia and akathisia following brief exposure to lithium carbonate. J Neurol Sci 2000; 176: 78–79.

    Article  CAS  PubMed  Google Scholar 

  13. Mazzini L, Oggioni GD, Nasuelli N, Servo S, Testa L, Monaco F . Disabling Parkinsonism following brief exposure to lithium carbonate in amyotrophic lateral sclerosis. J Neurol 2011; 258: 333–334.

    Article  CAS  PubMed  Google Scholar 

  14. Fallgatter AJ, Strik WK . Reversible neuropsychiatric side effects of lithium with normal serum levels. A case report. Nervenarzt 1997; 68: 586–590.

    Article  CAS  PubMed  Google Scholar 

  15. Perenyi A, Rihmer Z, Banki CM . Parkinsonian symptoms with lithium, lithium-neuroleptic, and lithium-antidepressant treatment. J Affect Disord 1983; 5: 171–177.

    Article  CAS  PubMed  Google Scholar 

  16. Marras C, Herrmann N, Fischer HD, Fung K, Gruneir A, Rochon PA et al. Lithium use in older adults is associated with increased prescribing of parkinson medications. Am J Geriatr Psychiatry 2016; 24: 301–309.

    Article  PubMed  Google Scholar 

  17. Gómez-Sintes R, Lucas JJ . NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy. J Clin Invest 2010; 120: 2432–2445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taliyan R, Ramagiri S . Delayed neuroprotection against cerebral ischemia reperfusion injury: putative role of BDNF and GSK-3beta. J Recept Signal Transduct Res 2015; 36: 1–9.

    Google Scholar 

  19. Berger GE, Wood SJ, Ross M, Hamer CA, Wellard RM, Pell G et al. Neuroprotective effects of low-dose lithium in individuals at ultra-high risk for psychosis. A longitudinal MRI/MRS study. Curr Pharm Des 2012; 18: 570–575.

    Article  CAS  PubMed  Google Scholar 

  20. Yung AR, Phillips LJ, Yuen HP, McGorry PD . Risk factors for psychosis in an ultra high-risk group: psychopathology and clinical features. Schizophr Res 2004; 67: 131–142.

    Article  PubMed  Google Scholar 

  21. Benarous X, Consoli A, Milhiet V, Cohen D . Early interventions for youths at high risk for bipolar disorder: a developmental approach. Eur Child Adolesc Psychiatry 2016; 25: 217–233.

    Article  PubMed  Google Scholar 

  22. Berger GE, Wood S, McGorry PD . Incipient neurovulnerability and neuroprotection in early psychosis. Psychopharmacol Bull 2003; 37: 79–101.

    PubMed  Google Scholar 

  23. van Rooden S, Versluis MJ, Liem MK, Milles J, Maier AB, Oleksik AM et al. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker. Alzheimers Dement 2014; 10: e19–e26.

    Article  PubMed  Google Scholar 

  24. Hong M, Chen DC, Klein PS, Lee VM . Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 1997; 272: 25326–25332.

    Article  CAS  PubMed  Google Scholar 

  25. Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J . Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett 1997; 411: 183–188.

    Article  CAS  PubMed  Google Scholar 

  26. Lovestone S, Davis DR, Webster MT, Kaech S, Brion J-P, Matus A et al. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 1999; 45: 995–1003.

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi M, Yasutake K, Tomizawa K . Lithium inhibits neurite growth and tau protein kinase I/glycogen synthase kinase-3beta-dependent phosphorylation of juvenile tau in cultured hippocampal neurons. J Neurochem 1999; 73: 2073–2083.

    CAS  PubMed  Google Scholar 

  28. Sun X, Sato S, Murayama O, Murayama M, Park JM, Yamaguchi H et al. Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci Lett 2002; 321: 61–64.

    Article  CAS  PubMed  Google Scholar 

  29. Phiel CJ, Wilson CA, Lee VM-Y, Klein PS . GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003; 423: 435–439.

    Article  CAS  PubMed  Google Scholar 

  30. Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry 2004; 43: 6899–6908.

    Article  CAS  PubMed  Google Scholar 

  31. Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci 2007; 27: 1981–1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sofola O, Kerr F, Rogers I, Killick R, Augustin H, Gandy C et al. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease. PLoS Genet 2010; 6: e1001087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toledo EM, Inestrosa NC . Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer's disease. Mol Psychiatry 2010; 15: 272–285, 228.

    Article  CAS  PubMed  Google Scholar 

  34. Fiorentini A, Rosi MC, Grossi C, Luccarini I, Casamenti F . Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS One 2010; 5: e14382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pérez M, Hernández F, Lim F, Díaz-Nido J, Avila J . Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis 2003; 5: 301–308.

    Article  PubMed  Google Scholar 

  36. Nakashima H, Ishihara T, Suguimoto P, Yokota O, Oshima E, Kugo A et al. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol 2005; 110: 547–556.

    Article  CAS  PubMed  Google Scholar 

  37. Noble WJ, Planel E, Zehr C, Olm V, Meyerson J, Suleman F et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 2005; 102: 6990–6995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engel T, Goñi-Oliver P, Lucas JJ, Avila J, Hernández F . Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 2006; 99: 1445–1455.

    Article  CAS  PubMed  Google Scholar 

  39. Leroy K, Ando K, Héraud C, Yilmaz Z, Authelet M, Boeynaems J-M et al. Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. J Alzheimers Dis 2010; 19: 705–719.

    Article  CAS  PubMed  Google Scholar 

  40. Hampel H, Ewers M, Bürger K, Annas P, Mörtberg A, Bogstedt A et al. Lithium trial in Alzheimer's disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry 2009; 70: 922–931.

    Article  CAS  PubMed  Google Scholar 

  41. Rametti A, Esclaire F, Yardin C, Cogné N, Terro F . Lithium down-regulates tau in cultured cortical neurons: a possible mechanism of neuroprotection. Neurosci Lett 2008; 434: 93–98.

    Article  CAS  PubMed  Google Scholar 

  42. Martin L, Magnaudeix A, Esclaire F, Yardin C, Terro F . Inhibition of glycogen synthase kinase-3beta downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A. Brain Res 2009; 1252: 66–75.

    Article  CAS  PubMed  Google Scholar 

  43. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 2012; 18: 291–295.

    Article  CAS  PubMed  Google Scholar 

  44. Lei P, Ayton S, Moon S, Zhang Q, Volitakis I, Finkelstein DI et al. Motor and cognitive deficits in aged tau knockout mice in two background strains. Mol Neurodegener 2014; 9: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma QL, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M et al. Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris water maze with aging. J Neurosci 2014; 34: 7124–7136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhukareva V, Vogelsberg-Ragaglia V, Van Deerlin VM, Bruce J, Shuck T, Grossman M et al. Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann Neurol 2001; 49: 165–175.

    Article  CAS  PubMed  Google Scholar 

  47. Zhukareva V, Sundarraj S, Mann D, Sjogren M, Blenow K, Clark CM et al. Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: an international follow-up study. Acta Neuropathol 2003; 105: 469–476.

    CAS  PubMed  Google Scholar 

  48. Ksiezak-Reding H, Binder LI, Yen S-HC . Immunochemical and biochemical characterization of tau proteins in normal and Alzheimer's disease brains with Alz 50 and Tau-1. J Biol Chem 1988; 263: 7948–7953.

    CAS  PubMed  Google Scholar 

  49. Shin RW, Iwaki T, Kitamoto T, Sato Y, Tateishi J . Massive accumulation of modified tau and severe depletion of normal tau characterize the cerebral cortex and white matter of Alzheimer's disease. Demonstration using the hydrated autoclaving method. Am J Pathol 1992; 140: 937–945.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Khatoon S, Grundke-Iqbal I, Iqbal K . Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 1994; 351: 80–84.

    Article  CAS  PubMed  Google Scholar 

  51. van Eersel J, Bi M, Ke YD, Hodges JR, Xuereb JH, Gregory GC et al. Phosphorylation of soluble tau differs in Pick's disease and Alzheimer's disease brains. J Neural Transm 2009; 116: 1243–1251.

    Article  CAS  PubMed  Google Scholar 

  52. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell 2010; 142: 857–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCarthy RC, Park YH, Kosman DJ . sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep 2014; 15: 809–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong BX, Tsatsanis A, Lim LQ, Adlard PA, Bush AI, Duce JA . beta-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 2014; 9: e114174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ayton S, Lei P . Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration. Biomed Res Int 2014; 2014: 581256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Campbell WG, Raskind MA, Gordon T, Shaw CM . Iron pigment in the brain of a man with tardive dyskinesia. Am J Psychiatry 1985; 142: 364–365.

    Article  CAS  PubMed  Google Scholar 

  57. Yung AR, Yuen HP, McGorry PD, Phillips LJ, Kelly D, Dell'Olio M et al. Mapping the onset of psychosis: the Comprehensive Assessment of At-Risk Mental States. Aust N Z J Psychiatry 2005; 39: 964–971.

    Article  PubMed  Google Scholar 

  58. Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M et al. Psychosis prediction: 12-month follow up of a high-risk ("prodromal") group. Schizophr Res 2003; 60: 21–32.

    Article  PubMed  Google Scholar 

  59. Greenough MA, Volitaskis I, Li Q-X, Laughton KM, Evin G, Ho M et al. Presenilins promote the cellular uptake of copper and zinc and maintain copper chaperone of SOD1-dependent copper/zinc superoxide dismutase activity. J Biol Chem 2011; 286: 9776–9786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP . Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 2001; 114 (Pt 6): 1179–1187.

    CAS  PubMed  Google Scholar 

  61. Chen JC, Hardy PA, Clauberg M, Joshi JG, Parravano J, Deck JH et al. T2 values in the human brain: comparison with quantitative assays of iron and ferritin. Radiology 1989; 173: 521–526.

    Article  CAS  PubMed  Google Scholar 

  62. Bartzokis G, Garber HJ, Marder SR, Olendorf WH . MRI in tardive dyskinesia: shortened left caudate T2. Biol Psychiatry 1990; 28: 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  63. Dhenain M, Duyckaerts C, Michot JL, Volk A, Picq JL, Boller F . Cerebral T2-weighted signal decrease during aging in the mouse lemur primate reflects iron accumulation. Neurobiol Aging 1998; 19: 65–69.

    Article  CAS  PubMed  Google Scholar 

  64. Positano V, Salani B, Pepe A, Santarelli MF, De Marchi D, Ramazzotti A et al. Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magn Reson Imaging 2009; 27: 188–197.

    Article  PubMed  Google Scholar 

  65. Sun H, Walsh AJ, Lebel RM, Blevins G, Catz I, Lu JQ et al. Validation of quantitative susceptibility mapping with Perls' iron staining for subcortical gray matter. Neuroimage 2014; 105: 486–492.

    Article  PubMed  Google Scholar 

  66. Caccamo A, Oddo S, Tran LX, LaFerla FM . Lithium reduces tau phosphorylation but not A beta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 2007; 170: 1669–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Malhi GS, Adams D, Berk M . Is lithium in a class of its own? A brief profile of its clinical use. Aust NZ J Psychiatry 2009; 43: 1096–1104.

    Article  Google Scholar 

  68. Frank GB, Jhamandas K . Effects of drugs acting alone and in combination on the motor activity of intact mice. Br J Pharmacol 1970; 39: 696–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Healy TE, Lautch H, Hall N, Tomlin PJ, Vickers MD . Interdisciplinary study of diazepam sedation for outpatient dentistry. Br Med J 1970; 3: 13–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tornberg J, Segerstråle M, Kulesskaya N, Voikar V, Taira T, Airaksinen MS . KCC2-deficient mice show reduced sensitivity to diazepam, but normal alcohol-induced motor impairment, gaboxadol-induced sedation, and neurosteroid-induced hypnosis. Neuropsychopharmacology 2007; 32: 911–918.

    Article  CAS  PubMed  Google Scholar 

  71. Zeller A, Crestani F, Camenisch I, Iwasato T, Itohara S, Fritschy JM et al. Cortical glutamatergic neurons mediate the motor sedative action of diazepam. Mol Pharmacol 2008; 73: 282–291.

    Article  CAS  PubMed  Google Scholar 

  72. Snyder SH, Taylor KM, Coyle JT, Meyerhoff JL . The role of brain dopamine in behavioral regulation and the actions of psychotropic drugs. Am J Psychiatry 1970; 127: 199–207.

    Article  CAS  PubMed  Google Scholar 

  73. Cox C, Harrison-Read PE, Steinberg H, Tomkiewicz M . Lithium attenuates drug-induced hyperactivity in rats. Nature 1971; 232: 336–338.

    Article  CAS  PubMed  Google Scholar 

  74. Friedman ES, Gershon S . Effect of lithium on brain dopamine. Nature 1973; 243: 520–521.

    Article  CAS  PubMed  Google Scholar 

  75. Dziedzicka-Wasylewska M, Maćkowiak M, Fijat K, Wedzony K . Adaptive changes in the rat dopaminergic transmission following repeated lithium administration. J Neural Transm 1996; 103: 765–776.

    Article  CAS  PubMed  Google Scholar 

  76. Atack JR, Cook SM, Watt AP, Fletcher SR, Ragan CI . In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. J Neurochem 1993; 60: 652–658.

    Article  CAS  PubMed  Google Scholar 

  77. Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M et al. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol 2003; 10: 1255–1266.

    Article  CAS  PubMed  Google Scholar 

  78. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins R, Smith DW et al. beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 1995; 81: 525–531.

    Article  CAS  PubMed  Google Scholar 

  79. Dallman PR, Spirito RA . Brain iron in the rat: extremely slow turnover in normal rats may explain long-lasting effects of early iron deficiency. J Nutr 1977; 107: 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  80. Chen JH, Shahnavas S, Singh N, Ong WY, Walczyk T . Stable iron isotope tracing reveals significant brain iron uptake in adult rats. Metallomics 2013; 5: 167–173.

    Article  CAS  PubMed  Google Scholar 

  81. Murray N, Hopwood S, Balfour DJ, Ogston S, Hewick DS . The influence of age on lithium efficacy and side-effects in out-patients. Psychol Med 1983; 13: 53–60.

    Article  CAS  PubMed  Google Scholar 

  82. Bell AJ, Cole A, Eccleston D, Ferrier IN . Lithium neurotoxicity at normal therapeutic levels. Br J Psychiatry 1993; 162: 689–692.

    Article  CAS  PubMed  Google Scholar 

  83. Flint A . Ageing as a risk factor for lithium neurotoxicity at therapeutic serum levels. Br J Psychiatry 1993; 163: 555–556.

    Article  CAS  PubMed  Google Scholar 

  84. Hare D, Ayton S, Bush A, Lei P . A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 2013; 5: 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hajek T, Kopecek M, Hoschl C, Alda M . Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci 2012; 37: 333–343.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pfennig A, Alda M, Young T, MacQueen G, Rybakowski J, Suwalska A et al. Prophylactic lithium treatment and cognitive performance in patients with a long history of bipolar illness: no simple answers in complex disease-treatment interplay. Int J Bipolar Disord 2014; 2: 1.

    Article  PubMed  Google Scholar 

  87. Wingo AP, Wingo TS, Harvey PD, Baldessarini RJ . Effects of lithium on cognitive performance: a meta-analysis. J Clin Psychiatry 2009; 70: 1588–1597.

    Article  CAS  PubMed  Google Scholar 

  88. Mora E, Portella MJ, Forcada I, Vieta E, Mur M . Persistence of cognitive impairment and its negative impact on psychosocial functioning in lithium-treated, euthymic bipolar patients: a 6-year follow-up study. Psychol Med 2013; 43: 1187–1196.

    Article  CAS  PubMed  Google Scholar 

  89. Evrensel A, Unsalver BO, Ceylan ME, Comert G . Lithium-induced cortical atrophy and cognitive dysfunction. BMJ Case Rep 2014; 2014: pii: bcr2014207646.

  90. Wang X, Culotta VC, Klee CB . Superoxide dismutase protects calcineurin from inactivation. Nature 1996; 383: 434–437.

    Article  CAS  PubMed  Google Scholar 

  91. Namgaladze D, Hofer HW, Ullrich V . Redox control of calcineurin by targeting the binuclear Fe(2+)-Zn(2+) center at the enzyme active site. J Biol Chem 2002; 277: 5962–5969.

    Article  CAS  PubMed  Google Scholar 

  92. Huang C, Li J, Zhang Q, Huang X . Role of bioavailable iron in coal dust-induced activation of activator protein-1 and nuclear factor of activated T cells: difference between Pennsylvania and Utah coal dusts. Am J Respir Cell Mol Biol 2002; 27: 568–574.

    Article  CAS  PubMed  Google Scholar 

  93. Huang X, Dai J, Huang C, Zhang Q, Bhanot O, Pelle E . Deferoxamine synergistically enhances iron-mediated AP-1 activation: a showcase of the interplay between extracellular-signal-regulated kinase and tyrosine phosphatase. Free Radic Res 2007; 41: 1135–1142.

    Article  CAS  PubMed  Google Scholar 

  94. Kremer A . GSK3 and Alzheimer’s disease: facts and fiction. Front Mol Neurosci 2011; 4: 1–10.

    Article  CAS  Google Scholar 

  95. Hu S, Begum AN, Jones MR, Oh MS, Beech WK, Beech BH et al. GSK3 inhibitors show benefits in an Alzheimer's disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol Dis 2009; 33: 193–206.

    Article  CAS  PubMed  Google Scholar 

  96. Gómez-Sintes R, Hernández F, Bortolozzi A, Artigas F, Avila J, Zaratin P et al. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J 2007; 26: 2743–2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ayton S, Lei P . The Abeta-induced NFAT apoptotic pathway is also activated by GSK-3 inhibition: implications for Alzheimer therapeutics. J Neurosci 2012; 32: 9454–9456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Macdonald A, Briggs K, Poppe M, Higgins A, Velayudhan L, Lovestone S . A feasibility and tolerability study of lithium in Alzheimer's disease. Int J Geriatr Psychiatry 2008; 23: 704–711.

    Article  PubMed  Google Scholar 

  99. Aggarwal SP, Zinman L, Simpson E, Mckinley J, Jackson KE, Pinto H et al. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2010; 9: 481–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Swash M . Lithium time-to-event trial in amyotrophic lateral sclerosis stops early for futility. Lancet Neurol 2010; 9: 449–451.

    Article  PubMed  Google Scholar 

  101. Verstraete E, Veldink JH, Huisman MH, Draak T, Uijtendaal EV, van der Kooi AJ et al. Lithium lacks effect on survival in amyotrophic lateral sclerosis: a phase IIb randomised sequential trial. J Neurol Neurosurg Psychiatry 2012; 83: 557–564.

    Article  PubMed  Google Scholar 

  102. Ayton S, Lei P, Bush AI . Biometals and their therapeutic implications in Alzheimer's disease. Neurotherapeutics 2014; 12: 109–120.

    Article  CAS  PubMed Central  Google Scholar 

  103. Langkammer C, Enzinger C, Quasthoff S, Grafenauer P, Soellinger M, Fazekas F et al. Mapping of iron deposition in conjunction with assessment of nerve fiber tract integrity in amyotrophic lateral sclerosis. J Magn Reson Imaging 2010; 31: 1339–1345.

    Article  PubMed  Google Scholar 

  104. Oba H, Araki T, Ohtomo K, Monzawa S, Uchiyama G, Koizumi K et al. Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 1993; 189: 843–846.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Sedjahtera, L Lam, L Gunawan, L Bray and K Wikhe for technical assistance. We also acknowledge L Phillips and B Nelson for their contributions in lithium human trial. This study was supported by funds from the Australian Research Council, the National Health & Medical Research Council (NHMRC) of Australia, the Cooperative Research Center for Mental Health, Alzheimer’s Australia Dementia Research Foundation and National Natural Science Foundation of China (81571236). A Bush was supported by a NHMRC Australia Fellowship (AF79) and a NHMRC Senior Principal Research Fellowship (1103703). C Pantelis was supported by a NHMRC Senior Principal Research Fellowship (628386 and 1105825). The imaging work on lithium was supported by NHMRC Project Grant (145627) and NHMRC Program Grants (350241 and 566529). P McGorry currently receives research support from NHMRC of Australia, the Colonial Foundation and NARSAD. Florey Institute of Neuroscience and Mental Health acknowledges the strong support from the Victorian Government and in particular the funding from the Operational Infrastructure Support Grant.

Author contributions

PL and AIB conceived and raised funds for the study. PL, SA, JAD, RC, DIF and AIB designed and performed the experiments. ATA, SM, IV and MG and assisted with the experiments. SJW, GB, CP, PM and AY conducted the lithium human trial. PL and AIB integrated the data and wrote the drafts of the manuscript. All authors edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P Lei or A I Bush.

Ethics declarations

Competing interests

Dr Finkelstein is a paid scientific consultant for Prana Biotechnology. Dr Bush is a shareholder in Prana Biotechnology, Eucalyptus, Mesoblast, Brighton Biotech and Nextvet, and a paid consultant for Collaborative Medicinal Developments. Dr Pantelis has participated on Advisory Boards for Janssen-Cilag, Astra-Zeneca, Lundbeck and Servier. He has received honoraria for talks presented at educational meetings organized by Astra-Zeneca, Janssen-Cilag, Eli Lilly, Pfizer, Lundbeck and Shire. Dr McGorry receives unrestricted research funding from Astra-Zenica, Eli Lilly, Janssen-Cilag, Pfizer and Novartis, as well as honoraria for educational activities with Astra-Zenica, Eli Lilly, Janssen-Cilag, Pfizer, Bristol Myer Squibb, Roche and the Lunbeck Institute. The remaining authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, P., Ayton, S., Appukuttan, A. et al. Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry 22, 396–406 (2017). https://doi.org/10.1038/mp.2016.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.96

This article is cited by

Search

Quick links