Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic ablation of the p66Shc adaptor protein reverses cognitive deficits and improves mitochondrial function in an APP transgenic mouse model of Alzheimer’s disease

Abstract

The mammalian ShcA adaptor protein p66Shc is a key regulator of mitochondrial reactive oxygen species (ROS) production and has previously been shown to mediate amyloid β (Aβ)-peptide-induced cytotoxicity in vitro. Moreover, p66Shc is involved in mammalian longevity and lifespan determination as revealed in the p66Shc knockout mice, which are characterized by a 30% prolonged lifespan, lower ROS levels and protection from age-related impairment of physical and cognitive performance. In this study, we hypothesized a role for p66Shc in Aβ-induced toxicity in vivo and investigated the effects of genetic p66Shc deletion in the PSAPP transgenic mice, an established Alzheimer’s disease mouse model of β-amyloidosis. p66Shc-ablated PSAPP mice were characterized by an improved survival and a complete rescue of Aβ-induced cognitive deficits at the age of 15 months. Importantly, these beneficial effects on survival and cognitive performance were independent of Aβ levels and amyloid plaque deposition, but were associated with improved brain mitochondrial respiration, a reversal of mitochondrial complex I dysfunction, restored adenosine triphosphate production and reduced ROS levels. The results of this study support a role for p66Shc in Aβ-related mitochondrial dysfunction and oxidative damage in vivo, and suggest that p66Shc ablation may be a promising novel therapeutic strategy against Aβ-induced toxicity and cognitive impairment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Querfurth HW, LaFerla FM . Alzheimer's disease. N Engl J Med 2010; 362: 329–344.

    Article  CAS  Google Scholar 

  2. Muller WE, Eckert A, Kurz C, Eckert GP, Leuner K . Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer's disease—therapeutic aspects. Mol Neurobiol 2010; 41: 159–171.

    Article  Google Scholar 

  3. Reddy PH, Beal MF . Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med 2008; 14: 45–53.

    Article  CAS  Google Scholar 

  4. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH . Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 2006; 15: 1437–1449.

    Article  CAS  Google Scholar 

  5. Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA 2008; 105: 13145–13150.

    Article  CAS  Google Scholar 

  6. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK . Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci 2006; 26: 9057–9068.

    Article  CAS  Google Scholar 

  7. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG . Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 2003; 161: 41–54.

    Article  CAS  Google Scholar 

  8. Muirhead KE, Borger E, Aitken L, Conway SJ, Gunn-Moore FJ . The consequences of mitochondrial amyloid beta-peptide in Alzheimer's disease. Biochem J 2010; 426: 255–270.

    Article  CAS  Google Scholar 

  9. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 2008; 105: 19318–19323.

    Article  CAS  Google Scholar 

  10. Pavlov PF, Wiehager B, Sakai J, Frykman S, Behbahani H, Winblad B et al. Mitochondrial gamma-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 2011; 25: 78–88.

    Article  CAS  Google Scholar 

  11. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH . Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet 2011; 20: 4515–4529.

    Article  CAS  Google Scholar 

  12. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 2001; 21: 3017–3023.

    Article  CAS  Google Scholar 

  13. Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ . Mitochondrial alterations near amyloid plaques in an Alzheimer's disease mouse model. J Neurosci 2013; 33: 17042–17051.

    Article  CAS  Google Scholar 

  14. Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M et al. Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy 2007; 3: 614–615.

    Article  CAS  Google Scholar 

  15. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD . Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 2009; 106: 14670–14675.

    Article  CAS  Google Scholar 

  16. Schmidt C, Lepsverdize E, Chi SL, Das AM, Pizzo SV, Dityatev A et al. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol Psychiatry 2008; 13: 953–969.

    Article  CAS  Google Scholar 

  17. Rhein V, Baysang G, Rao S, Meier F, Bonert A, Muller-Spahn F et al. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 2009; 29: 1063–1071.

    Article  CAS  Google Scholar 

  18. Mattson MP, Partin J, Begley JG . Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites. Brain Res 1998; 807: 167–176.

    Article  CAS  Google Scholar 

  19. Matsumoto K, Akao Y, Yi H, Shamoto-Nagai M, Maruyama W, Naoi M . Overexpression of amyloid precursor protein induces susceptibility to oxidative stress in human neuroblastoma SH-SY5Y cells. J Neural Transm (Vienna) 2006; 113: 125–135.

    Article  CAS  Google Scholar 

  20. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 2004; 304: 448–452.

    Article  CAS  Google Scholar 

  21. Keller JN, Pang Z, Geddes JW, Begley JG, Germeyer A, Waeg G et al. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J Neurochem 1997; 69: 273–284.

    Article  CAS  Google Scholar 

  22. Crouch PJ, Harding SM, White AR, Camakaris J, Bush AI, Masters CL . Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease. Int J Biochem Cell Biol 2008; 40: 181–198.

    Article  CAS  Google Scholar 

  23. Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA . Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 2002; 80: 91–100.

    Article  CAS  Google Scholar 

  24. Aleardi AM, Benard G, Augereau O, Malgat M, Talbot JC, Mazat JP et al. Gradual alteration of mitochondrial structure and function by beta-amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J Bioenerg Biomembr 2005; 37: 207–225.

    Article  CAS  Google Scholar 

  25. Abramov AY, Canevari L, Duchen MR . Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 2004; 24: 565–575.

    Article  CAS  Google Scholar 

  26. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 1999; 402: 309–313.

    Article  CAS  Google Scholar 

  27. Smith WW, Norton DD, Gorospe M, Jiang H, Nemoto S, Holbrook NJ et al. Phosphorylation of p66Shc and forkhead proteins mediates Abeta toxicity. J Cell Biol 2005; 169: 331–339.

    Article  CAS  Google Scholar 

  28. Bashir M, Parray AA, Baba RA, Bhat HF, Bhat SS, Mushtaq U et al. beta-Amyloid-evoked apoptotic cell death is mediated through MKK6-p66shc pathway. Neuromol Med 2014; 16: 137–149.

    Article  CAS  Google Scholar 

  29. Berry A, Capone F, Giorgio M, Pelicci PG, de Kloet ER, Alleva E et al. Deletion of the life span determinant p66Shc prevents age-dependent increases in emotionality and pain sensitivity in mice. Exp Gerontol 2007; 42: 37–45.

    Article  CAS  Google Scholar 

  30. Berry A, Greco A, Giorgio M, Pelicci PG, de Kloet R, Alleva E et al. Deletion of the lifespan determinant p66(Shc) improves performance in a spatial memory task, decreases levels of oxidative stress markers in the hippocampus and increases levels of the neurotrophin BDNF in adult mice. Exp Gerontol 2008; 43: 200–208.

    Article  CAS  Google Scholar 

  31. Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M et al. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci USA 2007; 104: 5217–5222.

    Article  CAS  Google Scholar 

  32. Francia P, delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E et al. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 2004; 110: 2889–2895.

    Article  CAS  Google Scholar 

  33. Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA 2003; 100: 2112–2116.

    Article  CAS  Google Scholar 

  34. Berniakovich I, Trinei M, Stendardo M, Migliaccio E, Minucci S, Bernardi P et al. p66Shc-generated oxidative signal promotes fat accumulation. J Biol Chem 2008; 283: 34283–34293.

    Article  CAS  Google Scholar 

  35. Francia P, Cosentino F, Schiavoni M, Huang Y, Perna E, Camici GG et al. p66(Shc) protein, oxidative stress, and cardiovascular complications of diabetes: the missing link. J Mol Med (Berl) 2009; 87: 885–891.

    Article  CAS  Google Scholar 

  36. Menini S, Amadio L, Oddi G, Ricci C, Pesce C, Pugliese F et al. Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes 2006; 55: 1642–1650.

    Article  CAS  Google Scholar 

  37. Menini S, Iacobini C, Ricci C, Oddi G, Pesce C, Pugliese F et al. Ablation of the gene encoding p66Shc protects mice against AGE-induced glomerulopathy by preventing oxidant-dependent tissue injury and further AGE accumulation. Diabetologia 2007; 50: 1997–2007.

    Article  CAS  Google Scholar 

  38. Pagnin E, Fadini G, de Toni R, Tiengo A, Calo L, Avogaro A . Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J Clin Endocrinol Metab 2005; 90: 1130–1136.

    Article  CAS  Google Scholar 

  39. Ranieri SC, Fusco S, Panieri E, Labate V, Mele M, Tesori V et al. Mammalian life-span determinant p66shcA mediates obesity-induced insulin resistance. Proc Natl Acad Sci USA 2010; 107: 13420–13425.

    Article  CAS  Google Scholar 

  40. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 2004; 13: 159–170.

    Article  CAS  Google Scholar 

  41. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG . Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010; 8: e1000412.

    Article  Google Scholar 

  42. Kulic L, McAfoose J, Welt T, Tackenberg C, Spani C, Wirth F et al. Early accumulation of intracellular fibrillar oligomers and late congophilic amyloid angiopathy in mice expressing the Osaka intra-Abeta APP mutation. Transl Psychiatry 2012; 2: e183.

    Article  CAS  Google Scholar 

  43. Franklin BJ, Paxinos GT . The Mouse Brain in Stereotaxic Coordinates. Academic Press: New York, 1996.

    Google Scholar 

  44. Spani C, Suter T, Derungs R, Ferretti MT, Welt T, Wirth F et al. Reduced beta-amyloid pathology in an APP transgenic mouse model of Alzheimer's disease lacking functional B and T cells. Acta Neuropathol Commun 2015; 3: 71.

    Article  Google Scholar 

  45. Hurst JL, West RS . Taming anxiety in laboratory mice. Nat Methods 2010; 7: 825–826.

    Article  CAS  Google Scholar 

  46. Kulic L, Wollmer MA, Rhein V, Pagani L, Kuehnle K, Cattepoel S et al. Combined expression of tau and the Harlequin mouse mutation leads to increased mitochondrial dysfunction, tau pathology and neurodegeneration. Neurobiol Aging 2011; 32: 1827–1838.

    Article  CAS  Google Scholar 

  47. David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P et al. Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 2005; 280: 23802–23814.

    Article  CAS  Google Scholar 

  48. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci USA 2009; 106: 20057–20062.

    Article  CAS  Google Scholar 

  49. Halford RW, Russell DW . Reduction of cholesterol synthesis in the mouse brain does not affect amyloid formation in Alzheimer's disease, but does extend lifespan. Proc Natl Acad Sci USA 2009; 106: 3502–3506.

    Article  CAS  Google Scholar 

  50. Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Lauren J, Gimbel ZA et al. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 2010; 30: 6367–6374.

    Article  CAS  Google Scholar 

  51. Savonenko A, Xu GM, Melnikova T, Morton JL, Gonzales V, Wong MP et al. Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer's disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiol Dis 2005; 18: 602–617.

    Article  CAS  Google Scholar 

  52. Volianskis A, Kostner R, Molgaard M, Hass S, Jensen MS . Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1deltaE9-deleted transgenic mice model of ss-amyloidosis. Neurobiol Aging 2010; 31: 1173–1187.

    Article  CAS  Google Scholar 

  53. Underwood E . NEUROSCIENCE. Alzheimer's amyloid theory gets modest boost. Science 2015; 349: 464.

    Article  CAS  Google Scholar 

  54. Reardon S . Antibody drugs for Alzheimer's show glimmers of promise. Nature 2015; 523: 509–510.

    Article  CAS  Google Scholar 

  55. Toyn J . What lessons can be learned from failed Alzheimer's disease trials? Expert Rev Clin Pharmacol 2015; 8: 267–269.

    Article  CAS  Google Scholar 

  56. Perry D, Sperling R, Katz R, Berry D, Dilts D, Hanna D et al. Building a roadmap for developing combination therapies for Alzheimer's disease. Expert Rev Neurother 2015; 15: 327–333.

    Article  CAS  Google Scholar 

  57. Lalonde R, Kim HD, Maxwell JA, Fukuchi K . Exploratory activity and spatial learning in 12-month-old APP(695)SWE/co+PS1/DeltaE9 mice with amyloid plaques. Neurosci Lett 2005; 390: 87–92.

    Article  CAS  Google Scholar 

  58. Jackson HM, Onos KD, Pepper KW, Graham LC, Akeson EC, Byers C et al. DBA/2J genetic background exacerbates spontaneous lethal seizures but lessens amyloid deposition in a mouse model of Alzheimer's disease. PLoS ONE 2015; 10: e0125897.

    Article  Google Scholar 

  59. Chan J, Jones NC, Bush AI, O'Brien TJ, Kwan P . A mouse model of Alzheimer's disease displays increased susceptibility to kindling and seizure-associated death. Epilepsia 2015; 56: e73–e77.

    Article  Google Scholar 

  60. Westmark CJ, Westmark PR, Beard AM, Hildebrandt SM, Malter JS . Seizure susceptibility and mortality in mice that over-express amyloid precursor protein. Int J Clin Exp Pathol 2008; 1: 157–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 2007; 55: 697–711.

    Article  CAS  Google Scholar 

  62. Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L et al. Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci 2009; 29: 3453–3462.

    Article  CAS  Google Scholar 

  63. Moreira PI, Sayre LM, Zhu X, Nunomura A, Smith MA, Perry G . Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease. Methods Mol Biol 2010; 610: 419–434.

    Article  CAS  Google Scholar 

  64. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J . Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39: 44–84.

    Article  CAS  Google Scholar 

  65. Subbarao KV, Richardson JS, Ang LC . Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro. J Neurochem 1990; 55: 342–345.

    Article  CAS  Google Scholar 

  66. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA . 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem 1997; 68: 2092–2097.

    Article  CAS  Google Scholar 

  67. Butterfield DA, Lauderback CM . Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002; 32: 1050–1060.

    Article  CAS  Google Scholar 

  68. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM . Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001; 21: 4183–4187.

    Article  CAS  Google Scholar 

  69. Hong Y, An Z . Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-kappaB signaling. Arch Pharm Res 2015.

  70. Zhou Y, Xie N, Li L, Zou Y, Zhang X, Dong M . Puerarin alleviates cognitive impairment and oxidative stress in APP/PS1 transgenic mice. Int J Neuropsychopharmacol 2014; 17: 635–644.

    Article  Google Scholar 

  71. Jin JL, Liou AK, Shi Y, Yin KL, Chen L, Li LL et al. CART treatment improves memory and synaptic structure in APP/PS1 mice. Sci Rep 2015; 5: 10224.

    Article  CAS  Google Scholar 

  72. Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E et al. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 2002; 21: 3872–3878.

    Article  CAS  Google Scholar 

  73. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G . Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim Biophys Acta 2010; 1802: 2–10.

    Article  CAS  Google Scholar 

  74. Bo H, Kang W, Jiang N, Wang X, Zhang Y, Ji LL . Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase. Oxid Med Cell Longev 2014; 2014: 834502.

    Article  Google Scholar 

  75. Schuh RA, Jackson KC, Schlappal AE, Spangenburg EE, Ward CW, Park JH et al. Mitochondrial oxygen consumption deficits in skeletal muscle isolated from an Alzheimer's disease-relevant murine model. BMC Neurosci 2014; 15: 24.

    Article  Google Scholar 

  76. Long AN, Owens K, Schlappal AE, Kristian T, Fishman PS, Schuh RA . Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer's disease-relevant murine model. BMC Neurol 2015; 15: 19.

    Article  Google Scholar 

  77. Dragicevic N, Mamcarz M, Zhu Y, Buzzeo R, Tan J, Arendash GW et al. Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer's transgenic mice. J Alzheimers Dis 2010; 20: S535–S550.

    Article  Google Scholar 

  78. Lu L, Guo L, Gauba E, Tian J, Wang L, Tandon N et al. Transient cerebral ischemia promotes brain mitochondrial dysfunction and exacerbates cognitive impairments in young 5xFAD mice. PLoS ONE 2015; 10: e0144068.

    Article  Google Scholar 

  79. Hirst J, King MS, Pryde KR . The production of reactive oxygen species by complex I. Biochem Soc Trans 2008; 36: 976–980.

    Article  CAS  Google Scholar 

  80. Orth M, Schapira AH . Mitochondria and degenerative disorders. Am J Med Genet 2001; 106: 27–36.

    Article  CAS  Google Scholar 

  81. Hroudova J, Singh N, Fisar Z . Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease. Biomed Res Int 2014; 2014: 175062.

    Article  Google Scholar 

  82. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005; 122: 221–233.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Hartmann Müller Foundation (LK), by the Hermann Klaus Foundation (LK) and by the Forschungskredit Grant K-82031-03-01 of the University of Zurich (RD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Kulic.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derungs, R., Camici, G., Spescha, R. et al. Genetic ablation of the p66Shc adaptor protein reverses cognitive deficits and improves mitochondrial function in an APP transgenic mouse model of Alzheimer’s disease. Mol Psychiatry 22, 605–614 (2017). https://doi.org/10.1038/mp.2016.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.112

This article is cited by

Search

Quick links