Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glutamatergic mechanisms of comorbidity between acute stress and cocaine self-administration

Abstract

There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining whether the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress, and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate-mediated synaptic currents and dendritic spine morphology. We also determined whether acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Seal KH, Metzler TJ, Gima KS, Bertenthal D, Maguen S, Marmar CR . Trends and risk factors for mental health diagnoses among Iraq and Afghanistan veterans using Department of Veterans Affairs health care, 2002-2008. Am J Public Health 2009; 99: 1651–1658.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE . Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62: 617–627.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boden MT, Kimerling R, Jacobs-Lentz J, Bowman D, Weaver C, Carney D et al. Seeking safety treatment for male veterans with a substance use disorder and post-traumatic stress disorder symptomatology. Addiction 2012; 107: 578–586.

    Article  PubMed  Google Scholar 

  4. Seal KH, Bertenthal D, Miner CR, Sen S, Marmar C . Bringing the war back home: mental health disorders among 103,788 US veterans returning from Iraq and Afghanistan seen at Department of Veterans Affairs facilities. Arch Int Med 2007; 167: 476–482.

    Article  Google Scholar 

  5. Shaham Y, Stewart J . Exposure to mild stress enhances the reinforcing efficacy of intravenous heroin self-administration in rats. Psychopharmacology 1994; 114: 523–527.

    Article  CAS  PubMed  Google Scholar 

  6. Esparza MA, Bollati F, Garcia-Keller C, Virgolini MB, Lopez LM, Brusco A et al. Stress-induced sensitization to cocaine: actin cytoskeleton remodeling within mesocorticolimbic nuclei. Eur J Neurosci 2012; 36: 3103–3117.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Garcia-Keller C, Martinez SA, Esparza MA, Bollati F, Kalivas PW, Cancela LM . Cross-sensitization between cocaine and acute restraint stress is associated with sensitized dopamine but not glutamate release in the nucleus accumbens. Eur J Neurosci 2013; 37: 982–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miczek KA, Mutschler NH . Activational effects of social stress on IV cocaine self-administration in rats. Psychopharmacology 1996; 128: 256–264.

    Article  CAS  PubMed  Google Scholar 

  9. Sorg BA, Kalivas PW . Behavioral and neurochemical cross-sensitization between footshock stress and cocaine. Brain Res 1991; 559: 29–36.

    Article  CAS  PubMed  Google Scholar 

  10. Goeders NE, Guerin GF . Non-contingent electric footshock facilitates the acquistion of intravenous cocaine self-adminstration in rats. Psychopharmacology 1994; 114: 63–70.

    Article  CAS  PubMed  Google Scholar 

  11. Cohen H, Kozlovsky N, Alona C, Matar MA, Joseph Z . Animal model for PTSD: from clinical concept to translational research. Neuropharmacology 2012; 62: 715–724.

    Article  CAS  PubMed  Google Scholar 

  12. Daskalakis NP, Yehuda R, Diamond DM . Animal models in translational studies of PTSD. Psychoneuroendocrinology 2013; 38: 1895–1911.

    Article  PubMed  Google Scholar 

  13. Piazza PV, Deroche-Gamonet V . A general theory of transition to addiction it was and a general theory of transition to addiction it is : reply to the commentaries of Ahmed, Badiani, George & Koob, Kalivas & Gipson, and Tiffany. Psychopharmacology (Berl) 2014; 231: 3929–3937.

    Article  CAS  Google Scholar 

  14. Bonci A, Borgland S . Role of orexin/hypocretin and CRF in the formation of drug-dependent synaptic plasticity in the mesolimbic system. Neuropharmacology 2009; 56: 107–111.

    Article  CAS  PubMed  Google Scholar 

  15. Ungless MA, Singh V, Crowder TL, Yaka R, Ron D, Bonci A . Corticotropin-releasing factor requires CRF binding protein to potentiate NMDA receptors via CRF receptor 2 in dopamine neurons. Neuron 2003; 39: 401–407.

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, You ZB, Rice KC, Wise RA . Stress-induced relapse to cocaine seeking: roles for the CRF(2) receptor and CRF-binding protein in the ventral tegmental area of the rat. Psychopharmacology (Berl) 2007; 193: 283–294.

    Article  CAS  Google Scholar 

  17. Wang B, You ZB, Wise RA . Heroin self-administration experience establishes control of ventral tegmental glutamate release by stress and environmental stimuli. Neuropsychopharmacology 2012; 37: 2863–2869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Belujon P, Grace AA . Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann NY Acad Sci 2011; 1216: 114–121.

    Article  CAS  PubMed  Google Scholar 

  19. Bagot RC, Parise EM, Pena CJ, Zhang HX, Maze I, Chaudhury D et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun 2015; 6: 7062.

    Article  CAS  PubMed  Google Scholar 

  20. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008; 454: 118–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kourrich S, Rothwell PE, Klug JR, Thomas MJ . Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci 2007; 27: 7921–7928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trantham-Davidson H, LaLumiere RT, Reissner KJ, Kalivas PW, Knackstedt LA . Ceftriaxone normalizes nucleus accumbens synaptic transmission, glutamate transport, and export following cocaine self-administration and extinction training. J Neurosci 2012; 32: 12406–12410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ . The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 2010; 33: 267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robinson TE, Kolb B . Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 2004; 47: 33–46.

    Article  CAS  PubMed  Google Scholar 

  25. Pan H-T, Menacherry L, Justice JB . Differences in the pharmacokinetics of cocaine in naive and cocaine-experienced rats. J Neurochem 1991; 56: 1299–1306.

    Article  CAS  PubMed  Google Scholar 

  26. Knackstedt LA, Melendez RI, Kalivas PW . Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry 2010; 67: 81–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dunkley PR, Jarvie PE, Robinson PJ . A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 2008; 3: 1718–1728.

    Article  CAS  PubMed  Google Scholar 

  28. Stigliani S, Zappettini S, Raiteri L, Passalacqua M, Melloni E, Venturi C et al. Glia re-sealed particles freshly prepared from adult rat brain are competent for exocytotic release of glutamate. J Neurochem 2006; 96: 656–668.

    Article  CAS  PubMed  Google Scholar 

  29. Shen HW, Scofield MD, Boger H, Hensley M, Kalivas PW . Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J Neurosci 2014; 34: 5649–5657.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shen H, Moussawi K, Zhou W, Toda S, Kalivas PW . Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci USA 2011; 108: 19407–19412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen HW, Toda S, Moussawi K, Bouknight A, Zahm DS, Kalivas PW . Altered dendritic spine plasticity in cocaine-withdrawn rats. J Neurosci 2009; 29: 2876–2884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolf ME, Ferrario CR . AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev 2011; 35: 185–211.

    Article  Google Scholar 

  33. Kalivas PW . The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009; 10: 561–572.

    Article  CAS  PubMed  Google Scholar 

  34. Gipson CD, Reissner KJ, Kupchik YM, Smith AC, Stankeviciute N, Hensley-Simon ME et al. Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proc Natl Acad Sci USA 2013; 110: 9124–9129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao PS, Sari Y . Glutamate transporter 1: target for the treatment of alcohol dependence. Curr Med Chem 2012; 19: 5148–5156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Danbolt NC . Glutamate uptake. Prog Neurobiol 2001; 65: 1–105.

    Article  CAS  PubMed  Google Scholar 

  37. Sari Y, Sakai M, Weedman JM, Rebec GV, Bell RL . Ceftriaxone, a beta-lactam antibiotic, reduces ethanol consumption in alcohol-preferring rats. Alcohol Alcohol 2011; 46: 239–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alhaddad H, Das SC, Sari Y . Effects of ceftriaxone on ethanol intake: a possible role for xCT and GLT-1 isoforms modulation of glutamate levels in P rats. Psychopharmacology (Berl) 2014; 231: 4049–4057.

    Article  CAS  Google Scholar 

  39. Reissner KJ, Gipson CD, Tran PK, Knackstedt LA, Scofield MD, Kalivas PW . Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict Biol 2014; 20: 316–323.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005; 433: 73–77.

    Article  CAS  PubMed  Google Scholar 

  41. Minelli A, Barbaresi P, Reimer RJ, Edwards RH, Conti F . The glial glutamate transporter GLT-1 is localized both in the vicinity of and at distance from axon terminals in the rat cerebral cortex. Neuroscience 2001; 108: 51–59.

    Article  CAS  PubMed  Google Scholar 

  42. Cholet N, Pellerin L, Magistretti PJ, Hamel E . Similar perisynaptic glial localization for the Na+,K+-ATPase alpha 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex 2002; 12: 515–525.

    Article  CAS  PubMed  Google Scholar 

  43. Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW . Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron 2013; 77: 867–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vialou V, Robison AJ, Laplant QC, Covington HE 3rd, Dietz DM, Ohnishi YN et al. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci 2010; 13: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Christoffel DJ, Golden SA, Walsh JJ, Guise KG, Heshmati M, Friedman AK et al. Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nat Neurosci 2015; 18: 962–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lim BK, Huang KW, Grueter BA, Rothwell PE, Malenka RC . Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 2012; 487: 183–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marinelli M, Piazza PV . Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci 2002; 16: 387–394.

    PubMed  Google Scholar 

  48. de Jong IE, de Kloet ER . Glucocorticoids and vulnerability to psychostimulant drugs: toward substrate and mechanism. Ann NY Acad Sci 2004; 1018: 192–198.

    Article  CAS  PubMed  Google Scholar 

  49. Ambroggi F, Turiault M, Milet A, Deroche-Gamonet V, Parnaudeau S, Balado E et al. Stress and addiction: glucocorticoid receptor in dopaminoceptive neurons facilitates cocaine seeking. Nat Neurosci 2009; 12: 247–249.

    Article  CAS  PubMed  Google Scholar 

  50. Tagliaferro P, Morales M . Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J Comp Neurol 2008; 506: 616–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang B, Shaham Y, Zitzman D, Azari S, Wise RA, You ZB . Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. J Neurosci 2005; 25: 5389–5396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen NA, Jupp B, Sztainberg Y, Lebow M, Brown RM, Kim JH et al. Knockdown of CRF1 receptors in the ventral tegmental area attenuates cue- and acute food deprivation stress-induced cocaine seeking in mice. J Neurosci 2014; 34: 11560–11570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cole BJ, Cador M, Stinus L, Rivier C, Rivier J, Vale W et al. Critical role of the hypothalamic pituitary adrenal axis in amphetamine-induced sensitization of behavior. Life Sci 1990; 47: 1715–1720.

    Article  CAS  PubMed  Google Scholar 

  54. Boyson CO, Miguel TT, Quadros IM, Debold JF, Miczek KA . Prevention of social stress-escalated cocaine self-administration by CRF-R1 antagonist in the rat VTA. Psychopharmacology (Berl) 2011; 218: 257–269.

    Article  CAS  Google Scholar 

  55. Sofuoglu M, Rosenheck R, Petrakis I . Pharmacological treatment of comorbid PTSD and substance use disorder: recent progress. Addict Behav 2014; 39: 428–433.

    Article  PubMed  Google Scholar 

  56. Berk M, Malhi GS, Gray LJ, Dean OM . The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 2013; 34: 167–177.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NIDA DA015369 (to PWK), DA012513 (to PWK), FONCyT PICT1867 (to LMC), CONICET PID 11420110100354 (to LMC) and SECyT 203/14 (to LMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P W Kalivas.

Ethics declarations

Competing interests

The authors declare no conflict interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Keller, C., Kupchik, Y., Gipson, C. et al. Glutamatergic mechanisms of comorbidity between acute stress and cocaine self-administration. Mol Psychiatry 21, 1063–1069 (2016). https://doi.org/10.1038/mp.2015.151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.151

This article is cited by

Search

Quick links