Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons

Abstract

Neuregulin 1 (NRG1) is a trophic factor that has an essential role in the nervous system by modulating neurodevelopment, neurotransmission and synaptic plasticity. Despite the evidence that NRG1 and its receptors, ErbB tyrosine kinases, are expressed in mesencephalic dopaminergic nuclei and their functional alterations are reported in schizophrenia and Parkinson’s disease, the role of NRG1/ErbB signalling in dopaminergic neurons remains unclear. Here we found that NRG1 selectively increases the metabotropic glutamate receptor 1 (mGluR1)-activated currents by inducing synthesis and trafficking to membrane of functional receptors and stimulates phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) pathway, which is required for mGluR1 function. Notably, an endogenous NRG1/ErbB tone is necessary to maintain mGluR1 function, by preserving its surface membrane expression in dopaminergic neurons. Consequently, it enables striatal mGluR1-induced dopamine outflow in in vivo conditions. Our results identify a novel role of NRG1 in the dopaminergic neurons, whose functional alteration might contribute to devastating diseases, such as schizophrenia and Parkinson’s disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Burden S, Yarden Y . Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 1997; 18: 847–855.

    Article  CAS  PubMed  Google Scholar 

  2. Buonanno A, Fischbach GD . Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 2001; 11: 287–296.

    Article  CAS  PubMed  Google Scholar 

  3. Falls DL . Neuregulins: functions, forms, and signalling strategies. Exp. Cell Res 2003; 284: 14–30.

    Article  CAS  PubMed  Google Scholar 

  4. Mei L, Xiong WC . Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008; 9: 437–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iwakura Y, Nawa H . ErbB1-4 dependent EGF/neuregulin signals and their crosstalk in the central nervous system: pathological implications in schizophrenia and Parkinson’s disease. Front Cell Neurosci 2013; 7: 1–13.

    Article  Google Scholar 

  6. Steiner H, Blum M, Kitai ST, Fedi P . Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons and forebrain areas of the adult rat. Exp Neurol 1999; 159: 494–503.

    Article  CAS  PubMed  Google Scholar 

  7. Kerber G, Streif R, Schwaiger FW, Kreutzberg GW, Hager G . Neuregulin-1 isoforms are differentially expressed in the intact and regenerating adult rat nervous system. J Mol Neurosci 2003; 21: 149–165.

    Article  CAS  PubMed  Google Scholar 

  8. Law AJ, Shannon Weickert C, Hyde TM, Kleinman JE, Harrison PJ . Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience 2004; 127: 125–136.

    Article  CAS  PubMed  Google Scholar 

  9. Abe Y, Namba H, Zheng Y, Nawa H . In situ hybridization reveals developmental regulation of ErbB1-4 mRNA expression in mouse midbrain: implication of ErbB receptors for dopaminergic neurons. Neuroscience 2009; 161: 95–110.

    Article  CAS  PubMed  Google Scholar 

  10. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL et al. Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry 2003; 8: 706–709.

    Article  CAS  PubMed  Google Scholar 

  12. Munafo’ MR, Thiselton DL, Clark TG, Flint J . Association of the NRG1 gene and schizophrenia: a meta-analysis. Mol Psychiatry 2006; 11: 539–546.

    Article  CAS  Google Scholar 

  13. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR . Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2004; 9: 299–307.

    Article  CAS  PubMed  Google Scholar 

  15. Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 2005; 10: 366–374.

    Article  CAS  PubMed  Google Scholar 

  16. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. Proc Natl Acad Sci USA 2006; 103: 6747–6752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 2006; 12: 824–828.

    Article  CAS  PubMed  Google Scholar 

  18. du Bois TM, Newell KA, Huang XF . Perinatal phencyclidine treatment alters neuregulin 1/erbB4 expression and activation in later life. Eur Neuropsychopharmacol 2012; 22: 356–363.

    Article  CAS  PubMed  Google Scholar 

  19. Radonjić NV, Jakovcevski I, Bumbaširević V, Petronijević ND . Perinatal phencyclidine administration decreases the density of cortical interneurons and increases the expression of neuregulin-1. Psycopharmacology 2013; 227: 673–683.

    Article  CAS  Google Scholar 

  20. Gerlai R, Pisacane P, Erickson S . Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioral tasks. Behav Brain Res 2000; 109: 219–227.

    Article  CAS  PubMed  Google Scholar 

  21. Golub MS, Germann SL, Lloyd KC . Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav Brain Res 2004; 153: 159–170.

    Article  CAS  PubMed  Google Scholar 

  22. Deakin IH, Law AJ, Oliver PL, Schwab MH, Nave KA, Harrison PJ, Bannerman DM . Behavioural characterization of neuregulin 1 type I overexpressing transgenic mice. Neuroreport 2009; 20: 1523–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deakin IH, Nissen W, Law AJ, Lane T, Kanso R, Schwab MH et al. Transgenic overexpression of the type I isoform of neuregulin 1 affects working memory and hippocampal oscillations but not long-term potentiation. Cereb Cortex 2012; 22: 1520–1529.

    Article  PubMed  Google Scholar 

  24. Kato T, Kasai A, Mizuno M, Fengyi L, Shintani N, Maeda S et al. Phenotypic characterization of transgenic mice overexpressing neuregulin-1. PLoS One 2010; 5: 1–13.

    Article  CAS  Google Scholar 

  25. Yin DM, Chen YJ, Lu YS, Bean JC, Sathyamurthy A, Shen C et al. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Neuron 2013; 78: 644–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Fletcher-Turner A, Marchionni MA, Apparsundaram S, Lundgren KH, Yurek DM et al. Neurotrophic and neuroprotective effects of the neuregulin glial growth factor-2 on dopaminergic neurons in rat primary midbrain cultures. J Neurochem 2004; 91: 1358–1368.

    Article  CAS  PubMed  Google Scholar 

  27. Carlsson T, Schindler FR, Höllerhage M, Depboylu C, Arias-Carrión O, Schnurrbusch S et al. Systemic administration of neuregulin-1β1 protects dopaminergic neurons in a mouse model of Parkinson's disease. J Neurochem 2011; 117: 1066–1074.

    Article  CAS  PubMed  Google Scholar 

  28. Depboylu C, Höllerhage M, Schnurrbusch S, Brundin P, Oertel WH, Schrattenholz A et al. Neuregulin-1 receptor tyrosine kinase ErbB4 is upregulated in midbrain dopaminergic neurons in Parkinson disease. Neurosci Lett 2012; 531: 209–214.

    Article  CAS  PubMed  Google Scholar 

  29. Kato T, Abe Y, Sotoyama H, Kakita A, Kominami R, Hirokawa S et al. Transient exposure of neonatal mice to neuregulin-1 results in hyperdopaminergic states in adulthood: implication in neurodevelopmental hypothesis for schizophrenia. Mol Psychiatry 2011; 16: 307–320.

    Article  CAS  PubMed  Google Scholar 

  30. Newell KA, Karl T, Huang XF . A neuregulin 1 transmembrane domain mutation causes imbalanced glutamatergic and dopaminergic receptor expression in mice. Neuroscience 2013; 248: 670–680.

    Article  CAS  PubMed  Google Scholar 

  31. Yurek DM, Zhang L, Fletcher-Turner A, Seroogy KB . Supranigral injection of neuregulin1-beta induces striatal dopamine overflow. Brain Res 2004; 1028: 116–119.

    Article  CAS  PubMed  Google Scholar 

  32. Kwon OB, Paredes D, Gonzalez CM, Neddens J, Hernandez L, Vullhorst D et al. Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proc Natl Acad Sci USA 2008; 105: 15587–15592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tansey MG, Chu GC, Merlie JP . ARIA/HRG regulates AChR epsilon subunit gene expression at the neuromuscular synapse via activation of phosphatidylinositol 3-kinase and Ras/MAPK pathway. J Cell Biol 1996; 134: 465–476.

    Article  CAS  PubMed  Google Scholar 

  34. Ozaki M, Sasner M, Yano R, Lu HS, Buonanno A . Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature 1997; 390: 691–694.

    Article  CAS  PubMed  Google Scholar 

  35. Rieff HI, Raetzman LT, Sapp DW, Yeh HH, Siegel RE, Corfas G . et al. Neuregulin induces GABAA receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci 1999; 19: 10757–10766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Okada M, Corfas G . Neuregulin 1 downregulates postsynaptic GABAA receptors at the hippocampal inhibitory synapse. Hippocampus 2004; 14: 337–344.

    Article  CAS  PubMed  Google Scholar 

  37. Gu Z, Jiang Q, Fu AKY, Ip NY, Yan Z . Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 2005; 25: 4974–4984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abe Y, Namba H, Kato T, Iwakura Y, Nawa H . Neuregulin-1 signals from the periphery regulate AMPA receptor sensitivity and expression in GABAergic interneurons in developing neocortex. J Neurosci 2011; 31: 5699–5709.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li B, Woo RS, Mei L, Malinow R . The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 2007; 54: 583–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schapansky J, Morissette M, Odero G, Albensi B, Glazner G . Neuregulin beta1 enhances peak glutamate-induced intracellular calcium levels through endoplasmic reticulum calcium release in cultured hippocampal neurons. Can J Physiol Pharmacol 2009; 87: 883–891.

    Article  CAS  PubMed  Google Scholar 

  41. Guatteo E, Mercuri NB, Bernardi G, Knöpfel T . Group I metabotropic glutamate receptors mediate an inward current in rat substantianigra dopamine neurons that is independent from calcium mobilization. J Neurophysiol 1999; 82: 1974–1981.

    Article  CAS  PubMed  Google Scholar 

  42. Tozzi A, Bengtson CP, Longone P, Carignani C, Fusco FR, Bernardi G et al. Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 2003; 18: 2133–2145.

    Article  PubMed  Google Scholar 

  43. Prisco S, Natoli S, Bernardi G, Mercuri NB . Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons. Neuropharmacology 2002; 42: 289–296.

    Article  CAS  PubMed  Google Scholar 

  44. Renoldi G, Calcagno E, Borsini F, Invernizzi RW . Stimulation of group I mGlu receptors in the ventrotegmental area enhances extracellular dopamine in the rat medial prefrontal cortex. J Neurochem 2007; 100: 1658–1666.

    CAS  PubMed  Google Scholar 

  45. Catania MV, D'Antoni S, Bonaccorso CM, Aronica E, Bear MF, Nicoletti F et al. Group I metabotropic glutamate receptors: a role in neurodevelopmental disorders? Mol Neurobiol 2007; 35: 298–307.

    Article  CAS  PubMed  Google Scholar 

  46. Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 1994; 79: 377–388.

    Article  CAS  PubMed  Google Scholar 

  47. Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF, Tonegawa S . (1994). Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 1994; 79: 365–375.

    Article  CAS  PubMed  Google Scholar 

  48. Lüscher C, Huber KM . Group 1 mGluR-dependent synaptic long-term depression (mGluR-LTD): mechanisms and implications for circuitry & disease. Neuron 2010; 65: 445–459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ferraguti F, Crepaldi L, Nicoletti F . Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 2008; 60: 536–581.

    Article  CAS  PubMed  Google Scholar 

  50. Mercuri NB, Bonci A, Calabresi P, Stefani A, Bernardi G . Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur J Neurosci 1995; 7: 462–469.

    Article  CAS  PubMed  Google Scholar 

  51. Gladding CM, Collett VJ, Jia Z, Bashir ZI, Collingridge GL, Molnár E et al. Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD. Mol Cell Neurosci 2009; 40: 267–279.

    Article  CAS  PubMed  Google Scholar 

  52. Paxison G, Watson C . The Rat Brain in Stereotaxic Coordinates, 5th edn. Academic Press, 2005.

    Google Scholar 

  53. Federici M, Latagliata EC, Ledonne A, Rizzo FR, Feligioni M, Sulzer D et al. Paradoxical abatement of striatal dopaminergic transmission by cocaine and methylphenidate. J Biol Chem 2014; 289: 264–274.

    Article  CAS  PubMed  Google Scholar 

  54. Schoepp DD, Goldsworthy J, Johnson BG, Salhoff CR, Baker SR . 3,5-Dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. J Neurochem 1994; 63: 769–772.

    Article  CAS  PubMed  Google Scholar 

  55. Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N et al. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 1998; 273: 10279–10287.

    Article  PubMed  Google Scholar 

  56. Subramony P, Dryer SE . Neuregulins stimulate the functional expression of Ca21-activated K1 channels in developing chicken parasympathetic neurons. Proc Natl Acad Sci USA 1997; 94: 5934–5938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Canetta SE, Luca E, Pertot E, Role LW, Talmage DA . Type III Nrg1 back signaling enhances functional TRPV1 along sensory axons contributing to basal and inflammatory thermal pain sensation. PLoS One 2011; 6: 1–16.

    Article  CAS  Google Scholar 

  58. Yao JJ, Sun J, Zhao QR, Wang CY, Mei YA . Neuregulin-1 /ErbB4 signaling regulates Kv4.2-mediated transient 2 outward K+ current through the Akt/mTOR pathway. Am J Physiol Cell Physiol 2013; 305: 197–206.

    Article  CAS  Google Scholar 

  59. Magalhaes AC, Dunn H, Ferguson SS . Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 2012; 165: 1717–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mundell SJ, Matharu AL, Pula G, Roberts PJ, Kelly E . Agonist-induced internalization of the metabotropic glutamate receptor 1a is arrestin- and dynamin-dependent. J Neurochem 2001; 78: 546–551.

    Article  CAS  PubMed  Google Scholar 

  61. Dhami GK, Ferguson SS . Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol Ther 2006; 111: 260–271.

    Article  CAS  PubMed  Google Scholar 

  62. Dale LB, Bhattacharya M, Seachrist JL, Anborgh PH, Ferguson SS . Agonist-stimulated and tonic internalization of metabotropic glutamate receptor 1a in human embryonic kidney 293 cells: agonist-stimulated endocytosis is beta-arrestin1 isoform-specific. Mol Pharmacol 2001; 60: 1243–1253.

    Article  CAS  PubMed  Google Scholar 

  63. Cenci MA . Dopamine dysregulation of movement control in L-DOPA-induced dyskinesia. Trends Neurosci 2007; 30: 236–243.

    Article  CAS  PubMed  Google Scholar 

  64. Simpson EH, Kellendonk C, Kandel E . A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 2010; 65: 585–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Swanson CJ, Kalivas PW . Regulation of locomotor activity by metabotropic glutamate receptors in the nucleus accumbens and ventral tegmental area. J Pharm Exp Ther 2000; 292: 406–414.

    CAS  Google Scholar 

  66. Hodgson RA, Hyde LA, Guthrie DH, Cohen-Williams ME, Leach PT, Kazdoba TM et al. Characterization of the selective mGluR1 antagonist, JNJ16259685, in rodent models of movement and coordination. Pharmacol Biochem Behav 2011; 98: 181–187.

    Article  CAS  PubMed  Google Scholar 

  67. Balu DT, Coyle JT . Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2011; 35: 848–870.

    Article  CAS  PubMed  Google Scholar 

  68. Laruelle M, Kegeles LS, Abi-Dargham A . Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann NY Acad Sci 2003; 1003: 138–158.

    Article  CAS  PubMed  Google Scholar 

  69. Perez-Costas E, Melendez-Ferro M, Roberts RC . Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 2010; 113: 287–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perez-Costas E, Melendez-Ferro M, Rice MW, Conley RR, Roberts RC . Dopamine pathology in schizophrenia: analysis of total and phosphorylated tyrosine hydroxylase in the substantia nigra. Front Psychiatry 2012; 3: 1–14.

    Article  CAS  Google Scholar 

  71. Yoon JH, Minzenberg MJ, Raouf S, D’Esposito M, Carter CS . Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry 2013; 74: 122–129.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Heckers S, Konradi C . Substantia nigra hyperactivity in schizophrenia. Biol Psychiatry 2013; 74: 82–83.

    Article  PubMed  Google Scholar 

  73. Reid MA, Kraguljac NV, Avsar KB, White DM, den Hollander JA, Lahti AC . Proton magnetic resonance spectroscopy of the substantia nigra in schizophrenia. Schizophr Res 2013; 147: 348–354.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Miyake N, Thompson J, Skinbjerg M, Abi-Dargham A . Presynaptic dopamine in schizophrenia. CNS Neurosci Ther 2011; 17: 104–109.

    Article  CAS  PubMed  Google Scholar 

  75. Lesage A, Steckler T . Metabotropic glutamate mGlu1 receptor stimulation and blockade: therapeutic opportunities in psychiatric illness. Eur J Pharmacol 2010; 639: 2–16.

    Article  CAS  PubMed  Google Scholar 

  76. Shigemoto R, Nakanishi S, Mizuno N . Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 1992; 322: 121–135.

    Article  CAS  PubMed  Google Scholar 

  77. Martin LJ, Blackstone CD, Huganir RL, Price DL . Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 1992; 9: 259–270.

    Article  CAS  PubMed  Google Scholar 

  78. Lavreysen H, Pereira SN, Leysen JE, Langlois X, Lesage AS . Metabotropic glutamate 1 receptor distribution and occupancy in the rat brain: a quantitative autoradiographic study using [3H]R214127. Neuropharmacology 2004; 46: 609–619.

    Article  CAS  PubMed  Google Scholar 

  79. Ayoub MA, Angelicheva D, Vile D, Chandler D, Morar B, Cavanaugh JA et al. Deleterious GRM1 mutations in schizophrenia. PLoS One 2012; 7: 1–8.

    Article  CAS  Google Scholar 

  80. Gupta DS, McCullumsmith RE, Beneyto M, Haroutunian V, Davis KL, Meador-Woodruff JH . Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse 2005; 57: 123–131.

    Article  CAS  PubMed  Google Scholar 

  81. Volk DW, Egganm SM, Lewism DA . Alterations in metabotropic glutamate receptor 1α and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry 2010; 167: 1489–1498.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Brody SA, Conquet F, Geyer MA . Disruption of prepulse inhibition in mice lacking mGluR1. Eur J Neurosci 2003; 8: 2261–3366.

    Google Scholar 

  83. Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L et al. Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 2012; 122: 1354–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been financed by Grants from the Minister of Health to NBM, Alzheimer’s Association (NIRG-11-204588) to MDA and the Italian Ministry of University and Research (PRIN 2009) to MDA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Ledonne, M D'Amelio or N B Mercuri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledonne, A., Nobili, A., Latagliata, E. et al. Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol Psychiatry 20, 959–973 (2015). https://doi.org/10.1038/mp.2014.109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.109

This article is cited by

Search

Quick links