Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An affective disorder in zebrafish with mutation of the glucocorticoid receptor

Abstract

Upon binding of cortisol, the glucocorticoid receptor (GR) regulates the transcription of specific target genes, including those that encode the stress hormones corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone. Dysregulation of the stress axis is a hallmark of major depression in human patients. However, it is still unclear how glucocorticoid signaling is linked to affective disorders. We identified an adult-viable zebrafish mutant in which the negative feedback on the stress response is disrupted, due to abolition of all transcriptional activity of GR. As a consequence, cortisol is elevated, but unable to signal through GR. When placed into an unfamiliar aquarium (‘novel tank’), mutant fish become immobile (‘freeze’), show reduced exploratory behavior and do not habituate to this stressor upon repeated exposure. Addition of the antidepressant fluoxetine to the holding water and social interactions restore normal behavior, followed by a delayed correction of cortisol levels. Fluoxetine does not affect the overall transcription of CRH, the mineralocorticoid receptor (MR), the serotonin transporter (Serta) or GR itself. Fluoxetine, however, suppresses the stress-induced upregulation of MR and Serta in both wild-type fish and mutants. Our studies show a conserved, protective function of glucocorticoid signaling in the regulation of emotional behavior and reveal novel molecular aspects of how chronic stress impacts vertebrate brain physiology and behavior. Importantly, the zebrafish model opens up the possibility of high-throughput drug screens in search of new classes of antidepressants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dickmeis T . Glucocorticoids and the circadian clock. J Endocrinol 2009; 200: 3–22.

    Article  CAS  Google Scholar 

  2. Lightman SL, Wiles CC, Atkinson HC, Henley DE, Russell GM, Leendertz JA et al. The significance of glucocorticoid pulsatility. Eur J Pharmacol 2008; 583: 255–262.

    Article  CAS  Google Scholar 

  3. Pariante CM, Lightman SL . The HPA axis in major depression: classical theories and new developments. Trends Neurosci 2008; 31: 464–468.

    Article  CAS  Google Scholar 

  4. Holsboer F . The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000; 23: 477–501.

    Article  CAS  Google Scholar 

  5. Belmaker RH, Agam G . Mechanisms of disease: major depressive disorder. N Engl J Med 2008; 358: 55–68.

    Article  CAS  Google Scholar 

  6. Carroll BJ . The Dexamethasone suppression test for melancholia. Br J Psychiatry 1982; 140: 292–304.

    Article  CAS  Google Scholar 

  7. Chandler VL, Maler BA, Yamamoto KR . DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 1983; 33: 489–499.

    Article  CAS  Google Scholar 

  8. So AY, Chaivorapol C, Bolton EC, Li H, Yamamoto KR . Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. Plos Genet 2007; 3: 927–938.

    Article  CAS  Google Scholar 

  9. Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR . DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 2009; 324: 407–410.

    Article  CAS  Google Scholar 

  10. Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 2011; 145: 224–241.

    Article  CAS  Google Scholar 

  11. de Kloet ER, Joels M, Holsboer F . Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463–475.

    Article  CAS  Google Scholar 

  12. Sahay A, Hen R . Hippocampal neurogenesis and depression. Novartis Found Symp 2008; 289: 152–160.

    Article  CAS  Google Scholar 

  13. Binder EB, Nemeroff CB . The CRF system, stress, depression and anxiety – insights from human genetic studies. Mol Psychiatry 2010; 15: 574–588.

    Article  CAS  Google Scholar 

  14. Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS et al. Forward genetic analysis of visual behavior in zebrafish. Plos Genet 2005; 1: 575–588.

    Article  CAS  Google Scholar 

  15. Schaaf MJM, Chatzopoulou A, Spaink HP . The zebrafish as a model system for glucocorticoid receptor research. Comp Biochem Physiol A Mol Integr Physiol 2009; 153: 75–82.

    Article  CAS  Google Scholar 

  16. Danielsen M, Northrop JP, Ringold GM . The mouse glucocorticoid receptor - mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins. EMBO J 1986; 5: 2513–2522.

    Article  CAS  Google Scholar 

  17. Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM . Functional domains of the human glucocorticoid receptor. Cell 1986; 46: 645–652.

    Article  CAS  Google Scholar 

  18. Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 1998; 93: 531–541.

    Article  CAS  Google Scholar 

  19. Kassel O, Herrlich P . Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 2007; 275: 13–29.

    Article  CAS  Google Scholar 

  20. Riml S, Schmidt S, Ausserlechner MJ, Geley S, Kofler R . Glucocorticoid receptor heterozygosity combined with lack of receptor auto-induction causes glucocorticoid resistance in Jurkat acute lymphoblastic leukemia cells. Cell Death Differ 2004; 11: S65–S72.

    Article  CAS  Google Scholar 

  21. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yammamoto KR, Siegler PB . Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 1991; 352: 497–505.

    Article  CAS  Google Scholar 

  22. Bernier NJ, Lin XW, Peter RE . Differential expression of corticotropin-releasing factor (CRF) and urotensin I precursor genes, and evidence of CRF gene expression regulated by cortisol in goldfish brain. Gen Comp Endocrinol 1999; 116: 461–477.

    Article  CAS  Google Scholar 

  23. Wong K, Elegante M, Bartels B, Elkhayat S, Tien D, Roy S et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res 2010; 208: 450–457.

    Article  CAS  Google Scholar 

  24. Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouvela Jr A . Measuring anxiety in zebrafish: a critical review. Behav Brain Res 2010; 214: 157–171.

    Article  Google Scholar 

  25. Engeszer RE, Ryan MJ, Parichy DM . Learned social preference in zebrafish. Curr Biol 2004; 14: 881–884.

    Article  CAS  Google Scholar 

  26. Kikusui T, Winslow JT, Mori Y . Social buffering: relief from stress and anxiety. Philos Trans Royal Soc B Biol Sci 2006; 361: 2215–2228.

    Article  CAS  Google Scholar 

  27. Ruiz M, Lind U, Gafvels M, Eggertsen G, Carlstedt-Duke J, Nilsson L et al. Characterization of two novel mutations in the glucocorticoid receptor gene in patients with primary cortisol resistance. Clin Endocrinol (Oxf) 2001; 55: 363–371.

    Article  CAS  Google Scholar 

  28. Charmandari E, Kino T, Ichijo T, Zachman K, Alatsatianos A, Chrousos GP . Functional characterization of the natural human glucocorticoid receptor (hGR) mutants hGR alpha R477H and hGR alpha G679S associated with generalized glucocorticoid resistance. J Clin Endocrinol Metab 2006; 91: 1535–1543.

    Article  CAS  Google Scholar 

  29. Marcelli M, Zoppi S, Grino PB, Griffin JE, Wilson JD, McPhaul MJ . A mutation in the DNA-binding domain of the androgen receptor gene causes complete testicular feminization in a patient with receptor-positive androgen resistance. J Clin Invest 1991; 87: 1123–1126.

    Article  CAS  Google Scholar 

  30. Champagne DL, Hoefnagels CCM, de Kloet RE, Richardson MK . Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res 2010; 214: 332–342.

    Article  Google Scholar 

  31. Blaser RE, Chadwick L, McGinnis GC . Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 2010; 208: 56–62.

    Article  CAS  Google Scholar 

  32. Maximino C, de Brito TM, Colmanetti R, Pontes AA, de Castro HM, de Lacerda RI et al. Parametric analyses of anxiety in zebrafish scototaxis. Behav Brain Res 2010; 210: 1–7.

    Article  Google Scholar 

  33. Lockwood B, Bjerke S, Kobayashi K, Guo S . Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol Biochem Behav 2004; 77: 647–654.

    Article  CAS  Google Scholar 

  34. Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 2010; 214: 277–284.

    Article  CAS  Google Scholar 

  35. Ressler KJ, Nemeroff CB . Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 2000; 12: 2–19.

    Article  Google Scholar 

  36. Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M . Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev 2008; 32: 1174–1184.

    Article  CAS  Google Scholar 

  37. Clements S, Moore FL, Schreck CB . Evidence that acute serotonergic activation potentiates the locomotor-stimulating effects of corticotropin-releasing hormone in juvenile chinook salmon (Oncorhynchus tshawytscha). Horm Behav 2003; 43: 214–221.

    Article  CAS  Google Scholar 

  38. Carpenter RE, Watt MJ, Forster GL, Øverli Ø, Bockholt C, Renner KJ et al. Corticotropin releasing factor induces anxiogenic locomotion in trout and alters serotonergic and dopaminergic activity. Horm Behav 2007; 52: 600–611.

    Article  CAS  Google Scholar 

  39. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  Google Scholar 

  40. Chourbaji S, Gass P . Glucocorticoid receptor transgenic mice as models for depression. Brain Res Rev 2008; 57: 554–560.

    Article  CAS  Google Scholar 

  41. Kolber BJ, Wieczorek L, Muglia LJ . Hypothalamic-pituitary-adrenal axis dysregulation and behavioral analysis of mouse mutants with altered glucocorticoid or mineralocorticoid receptor function. Stress 2008; 11: 321–338.

    Article  CAS  Google Scholar 

  42. Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W et al. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 2005; 25: 6243–6250.

    Article  CAS  Google Scholar 

  43. Boyle MP, Brewer JA, Funatsu M, Wozniak DF, Tsien JZ, Izumi Y et al. Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proc Natl Acad Sci USA 2005; 102: 473–478.

    Article  CAS  Google Scholar 

  44. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 1999; 23: 99–103.

    Article  CAS  Google Scholar 

  45. Montkowski A, Barden N, Wotjak C, Stec I, Ganster J, Meaney M et al. Long-term antidepressant treatment reduces behavioral deficits in transgenic mice with impaired glucocorticoid receptor function. J Neuroendocrinol 1995; 7: 841–845.

    Article  CAS  Google Scholar 

  46. Wei Q, Lu XY, Liu L, Schafer G, Shieh KR, Burke S et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci USA 2004; 101: 11851–11856.

    Article  CAS  Google Scholar 

  47. Rozeboom AM, Akil H, Seasholtz AF . Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice. Proc Natl Acad Sci USA 2007; 104: 4688–4693.

    Article  CAS  Google Scholar 

  48. Groeneweg FL, Karst H, de Kloet ER, Joels M . Rapid non-genomic effects of corticosteroids and their role in the central stress response. J Endocrinol 2011; 209: 153–167.

    Article  CAS  Google Scholar 

  49. Di S, Malcher-Lopes R, Halmos KC, Tasker JG . Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci 2003; 23: 4850–4857.

    Article  CAS  Google Scholar 

  50. Groc L, Choquet D, Chaouloff F . The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci 2008; 11: 868–870.

    Article  CAS  Google Scholar 

  51. Liu L, Wang CN, Ni X, Sun JH . A rapid inhibition of NMDA receptor current by corticosterone in cultured hippocampal neurons. Neurosci Lett 2007; 420: 245–250.

    Article  CAS  Google Scholar 

  52. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 2010; 327: 348–351.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J Kitamoto and M Suzawa for technical assistance on some of our preliminary experiments; E Gahtan, NM Shah, R Carpenter, R Fletterick, R Fernald and M Dallman for advice and comments; S Hong and I Dawid for sending us the kohtalo mutant for complementation testing; G Rechavi for support of LZ, and members of the Baier lab for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Baier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziv, L., Muto, A., Schoonheim, P. et al. An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Mol Psychiatry 18, 681–691 (2013). https://doi.org/10.1038/mp.2012.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.64

Keywords

This article is cited by

Search

Quick links