Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression

Abstract

Stress-related psychiatric disorders are more prevalent in women than men. As hypersecretion of the stress neuromediator, corticotropin-releasing factor (CRF) has been implicated in these disorders, sex differences in CRF sensitivity could underlie this disparity. Hyperarousal is a core symptom that is shared by stress-related disorders and this has been attributed to CRF regulation of the locus ceruleus (LC)-norepinephrine arousal system. We recently identified sex differences in CRF1 receptor (CRF1) signaling and trafficking that render LC neurons of female rats more sensitive to CRF and potentially less able to adapt to excess CRF compared with male rats. The present study used a genetic model of CRF overexpression to test the hypothesis that females would be more vulnerable to LC dysregulation by conditions of excess CRF. In both male and female CRF overexpressing (CRF-OE) mice, the LC was more densely innervated by CRF compared with wild-type controls. Despite the equally dense CRF innervation of the LC in male and female CRF-OE mice, LC discharge rates recorded in slices in vitro were selectively elevated in female CRF-OE mice. Immunoelectron microscopy revealed that this sex difference resulted from differential CRF1 trafficking. In male CRF-OE mice, CRF1 immunolabeling was prominent in the cytoplasm of LC neurons, indicative of internalization, a process that would protect cells from excessive CRF. However, in female CRF-OE mice, CRF1 labeling was more prominent on the plasma membrane, suggesting that the compensatory response of internalization was compromised. Together, the findings suggest that the LC-norepinephrine system of females will be particularly affected by conditions resulting in elevated CRF because of differences in receptor trafficking. As excessive LC activation has been implicated in the arousal components of stress-related psychiatric disorders, this may be a cellular mechanism that contributes to the increased incidence of these disorders in females.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Fava M, Kendler KS . Major depressive disorder. Neuron 2000; 28: 335–341.

    Article  CAS  PubMed  Google Scholar 

  2. Keane TM, Marshall AD, Taft CT . Posttraumatic stress disorder: etiology, epidemiology, and treatment outcome. Annu Rev Clin Psychol 2006; 2: 161–197.

    Article  PubMed  Google Scholar 

  3. Kendler KS, Kessler RC, Walters EE, MacLean C, Neale MC, Heath AC et al. Stressful life events, genetic liability, and onset of an episode of major depression in women. Am J Psychiatry 1995; 152: 833–842.

    Article  CAS  PubMed  Google Scholar 

  4. Kessler RC, McGonagle KA, Nelson CB, Hughes M, Swartz M, Blazer DG . Sex and depression in the national comorbidity survey. II: Cohort effects. J Affect Disord 1994; 30: 15–26.

    Article  CAS  PubMed  Google Scholar 

  5. Kessler RC . Epidemiology of women and depression. J Affect Disord 2003; 74: 5–13.

    Article  PubMed  Google Scholar 

  6. Vamvakopoulos NC, Chrousos GP . Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction. J Clin Invest 1993; 92: 1896–1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chrousos GP, Torpy DJ, Gold PW . Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 1998; 129: 229–240.

    Article  CAS  PubMed  Google Scholar 

  8. Vamvakopoulos NC, Chrousos GP . Hormonal regulation of human corticotropin-releasing hormone gene expression: implications for the stress response and immune/inflammatory reaction. Endocr Rev 1994; 15: 409–420.

    Article  CAS  PubMed  Google Scholar 

  9. Bangasser DA, Curtis A, Reyes BA, Bethea TT, Parastatidis I, Ischiropoulos H et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry 2010; 15: 877, 896–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vale W, Spiess J, Rivier C, Rivier J . Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213: 1394–1397.

    Article  CAS  PubMed  Google Scholar 

  11. Valentino RJ, Van Bockstaele E . Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 2008; 583: 194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Valentino RJ, Van Bockstaele EJ . Corticotropin-releasing factor: putative neurotransmitter actions of a neurohormone. In: Pfaff AA D, Etgen A, Fahrbach S, Moss R, Rubin R (eds). Hormones, Brain and Behavior, vol. 4. Academic Press: San Diego, 2002, pp 81–102.

    Chapter  Google Scholar 

  13. Van Bockstaele EJ, Reyes BA, Valentino RJ . The locus coeruleus: A key nucleus where stress and opioids intersect to mediate vulnerability to opiate abuse. Brain Res 2010; 1314: 162–174.

    Article  CAS  PubMed  Google Scholar 

  14. Curtis AL, Lechner SM, Pavcovich LA, Valentino RJ . Activation of the locus coeruleus noradrenergic system by intracoerulear microinfusion of corticotropin-releasing factor: effects on discharge rate, cortical norepinephrine levels and cortical electroencephalographic activity. J Pharmacol Exp Ther 1997; 281: 163–172.

    CAS  PubMed  Google Scholar 

  15. Lechner SM, Curtis AL, Brons R, Valentino RJ . Locus coeruleus activation by colon distention: role of corticotropin-releasing factor and excitatory amino acids. Brain Res 1997; 756: 114–124.

    Article  CAS  PubMed  Google Scholar 

  16. Page ME, Berridge CW, Foote SL, Valentino RJ . Corticotropin-releasing factor in the locus coeruleus mediates EEG activation associated with hypotensive stress. Neurosci Lett 1993; 164: 81–84.

    Article  CAS  PubMed  Google Scholar 

  17. Bissette G, Klimek V, Pan J, Stockmeier C, Ordway G . Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology 2003; 28: 1328–1335.

    Article  CAS  PubMed  Google Scholar 

  18. Bremner JD, Licinio J, Darnell A, Krystal JH, Owens MJ, Southwick SM et al. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry 1997; 154: 624–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gold PW, Chrousos GP . Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 2002; 7: 254–275.

    Article  CAS  PubMed  Google Scholar 

  20. Wong ML, Kling MA, Munson PJ, Listwak S, Licinio J, Prolo P et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc Natl Acad Sci USA 2000; 97: 325–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Curtis AL, Bethea T, Valentino RJ . Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. Neuropsychopharmacology 2006; 31: 544–554.

    Article  CAS  PubMed  Google Scholar 

  22. Checkley S . The neuroendocrinology of depression and chronic stress. Br Med Bull 1996; 52: 597–617.

    Article  CAS  PubMed  Google Scholar 

  23. Kay WH, Gwirtsman HE, George DT, Ebert MH, Jimerson DC, Tomai TP et al. Elevated cerebrospinal fluid levels of immunoreactive corticotropin-releasing hormone in anorexia nervosa: relation to state of nutrition, adrenal function and intensity of depression. J Clin Endocrinol Met 1987; 64: 203.

    Article  Google Scholar 

  24. Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 1984; 226: 1342–1344.

    CAS  PubMed  Google Scholar 

  25. Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF . Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 1994; 60: 436–444.

    Article  CAS  PubMed  Google Scholar 

  26. Raison CL, Miller AH . When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 2003; 160: 1554–1565.

    Article  PubMed  Google Scholar 

  27. Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W . Development of Cushing's syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992; 130: 3378–3386.

    Article  CAS  PubMed  Google Scholar 

  28. Dirks A, Groenink L, Bouwknecht JA, Hijzen TH, Van Der Gugten J, Ronken E et al. Overexpression of corticotropin-releasing hormone in transgenic mice and chronic stress-like autonomic and physiological alterations. Eur J Neurosci 2002; 16: 1751–1760.

    Article  PubMed  Google Scholar 

  29. Lu A, Steiner MA, Whittle N, Vogl AM, Walser SM, Ableitner M et al. Conditional CRH overexpressing mice: an animal model for stress-elicited pathologies and treatments that target the central CRH system. Mol Psychiatry 2008; 13: 989.

    Article  CAS  PubMed  Google Scholar 

  30. Vicentini E, Arban R, Angelici O, Maraia G, Perico M, Mugnaini M et al. Transient forebrain over-expression of CRF induces plasma corticosterone and mild behavioural changes in adult conditional CRF transgenic mice. Pharmacol Biochem Behav 2009; 93: 17–24.

    Article  CAS  PubMed  Google Scholar 

  31. Valentino RJ, Page ME, Van Bockstaele E, Aston-Jones G . Corticotropin-releasing factor innervation of the locus coeruleus region: distribution of fibers and sources of input. Neuroscience 1992; 48: 689–705.

    Article  CAS  PubMed  Google Scholar 

  32. Crawford LK, Craige CP, Beck SG . Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J Neurophysiol 2010; 103: 2652–2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swinny JD, O'Farrell E, Bingham BC, Piel DA, Valentino RJ, Beck SG . Neonatal rearing conditions distinctly shape locus coeruleus neuronal activity, dendritic arborization, and sensitivity to corticotrophin-releasing factor. Int J Neuropsychopharmacol 2010; 13: 515–525.

    Article  CAS  PubMed  Google Scholar 

  34. Beck SG, Pan YZ, Akanwa AC, Kirby LG . Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 2004; 91: 994–1005.

    Article  PubMed  Google Scholar 

  35. Bangasser DA, Zhang X, Garachh V, Hanhauser E, Valentino RJ . Sexual dimorphism in locus coeruleus dendritic morphology: a structural basis for sex differences in emotional arousal. Physiol Behav 2011; 103: 342–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Calizo LH, Akanwa A, Ma X, Pan YZ, Lemos JC, Craige C et al. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 2011; 61: 524–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reyes BA, Fox K, Valentino RJ, Van Bockstaele EJ . Agonist-induced internalization of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Eur J Neurosci 2006; 23: 2991–2998.

    Article  PubMed  Google Scholar 

  38. Reyes BA, Valentino RJ, Van Bockstaele EJ . Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 2008; 149: 122–130.

    Article  CAS  PubMed  Google Scholar 

  39. Treweek JB, Jaferi A, Colago EE, Zhou P, Pickel VM . Electron microscopic localization of corticotropin-releasing factor (CRF) and CRF receptor in rat and mouse central nucleus of the amygdala. J Comp Neurol 2009; 512: 323–335.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goebel M, Fleming SM, Million M, Stengel A, Tache Y, Wang L . Mice overexpressing corticotropin-releasing factor show brain atrophy and motor dysfunctions. Neurosci Lett 2010; 473: 11–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paladini CA, Beckstead MJ, Weinshenker D . Electrophysiological properties of catecholaminergic neurons in the norepinephrine-deficient mouse. Neuroscience 2007; 144: 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  42. Chrousos GP, Gold PW . The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992; 267: 1244–1252.

    Article  CAS  PubMed  Google Scholar 

  43. Linthorst ACE, Flachskamm C, Hopkins SJ, Hoadley ME, Labeur MS, Holsboer F et al. Long-term intracerebroventricular infusion of corticotropin-releasing hormone alters neuroendocrine, neurochemical, autonomic, behavioral, and cytokine respones to a systemic inflammatory challenge. J Neurosci 1997; 17: 4448–4460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Labeur MS, Arzt E, Wiegers GJ, Holsboer F, Reul JM . Long-term intracerebroventricular corticotropin-releasing hormone administration induces distinct changes in rat splenocyte activation and cytokine expression. Endocrinology 1995; 136: 2678–2688.

    Article  CAS  PubMed  Google Scholar 

  45. Regev L, Neufeld-Cohen A, Tsoory M, Kuperman Y, Getselter D, Gil S et al. Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation. Mol Psychiatry 2011; 16: 714–728.

    Article  CAS  PubMed  Google Scholar 

  46. Groenink L, Pattij T, De Jongh R, Van der Gugten J, Oosting RS, Dirks A et al. 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety. Eur J Pharmacol 2003; 463: 185–197.

    Article  CAS  PubMed  Google Scholar 

  47. Dirks A, Groenink L, Schipholt MI, van der Gugten J, Hijzen TH, Geyer MA et al. Reduced startle reactivity and plasticity in transgenic mice overexpressing corticotropin-releasing hormone. Biol Psychiatry 2002; 51: 583–590.

    Article  CAS  PubMed  Google Scholar 

  48. Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW . Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 1994; 14 (5 Pt 1): 2579–2584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Gaalen MM, Stenzel-Poore MP, Holsboer F, Steckler T . Effects of transgenic overproduction of CRH on anxiety-like behaviour. Eur J Neurosci 2002; 15: 2007–2015.

    Article  PubMed  Google Scholar 

  50. Wood SK, Baez MA, Bhatnagar S, Valentino RJ . Social stress-induced bladder dysfunction: potential role of corticotropin-releasing factor. Am J Physiol Regul Integr Comp Physiol 2009; 296: R1671–R1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Curtis AL, Bello NT, Valentino RJ . Evidence for functional release of endogenous opioids in the locus ceruleus during stress termination. J Neurosci 2001; 21: RC152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kawahara H, Kawahara Y, Westerink BH . The role of afferents to the locus coeruleus in the handling stress-induced increase in the release of norepinephrine in the medial prefrontal cortex: a dual-probe microdialysis study in the rat brain. Eur J Pharmacol 2000; 387: 279–286.

    Article  CAS  PubMed  Google Scholar 

  53. Valentino RJ, Page ME, Curtis AL . Activation of noradrenergic locus coeruleus neurons by hemodynamic stress is due to local release of corticotropin-releasing factor. Brain Res 1991; 555: 25–34.

    Article  CAS  PubMed  Google Scholar 

  54. Smagin GN, Zhou J, Harris RB, Ryan DH . CRF receptor antagonist attenuates immobilization stress-induced norepinephrine release in the prefrontal cortex in rats. Brain Res Bull 1997; 42: 431–434.

    Article  CAS  PubMed  Google Scholar 

  55. Koob GF . Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 1999; 46: 1167–1180.

    Article  CAS  PubMed  Google Scholar 

  56. Southwick SM, Bremner JD, Rasmusson A, Morgan 3rd CA, Arnsten A, Charney DS . Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol Psychiatry 1999; 46: 1192–1204.

    Article  CAS  PubMed  Google Scholar 

  57. Perry SJ, Junger S, Kohout TA, Hoare SR, Struthers RS, Grigoriadis DE et al. Distinct conformations of the corticotropin releasing factor type 1 receptor adopted following agonist and antagonist binding are differentially regulated. J Biol Chem 2005; 280: 11560–11568.

    Article  CAS  PubMed  Google Scholar 

  58. Rasmussen TN, Novak I, Nielsen SM . Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment. Eur J Biochem 2004; 271: 4366–4374.

    Article  CAS  PubMed  Google Scholar 

  59. Hauger RL, Risbrough V, Oakley RH, Olivares-Reyes JA, Dautzenberg FM . Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann N Y Acad Sci 2009; 1179: 120–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oakley RH, Olivares-Reyes JA, Hudson CC, Flores-Vega F, Dautzenberg FM, Hauger RL . Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses. Am J Physiol Regul Integr Comp Physiol 2007; 293: R209–R222.

    Article  CAS  PubMed  Google Scholar 

  61. Swinny JD, Valentino RJ . Corticotropin-releasing factor promotes growth of brain norepinephrine neuronal processes through Rho GTPase regulators of the actin cytoskeleton in rat. Eur J Neurosci 2006; 24: 2481–2490.

    Article  PubMed  Google Scholar 

  62. Cibelli G, Corsi P, Diana G, Vitiello F, Thiel G . Corticotropin-releasing factor triggers neurite outgrowth of a catecholaminergic immortalized neuron via cAMP and MAP kinase signalling pathways. Eur J Neurosci 2001; 13: 1339–1348.

    Article  CAS  PubMed  Google Scholar 

  63. Van Bockstaele EJ, Colago EE, Valentino RJ . Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: substrate for the co-ordination of emotional and cognitive limbs of the stress response. J Neuroendocrinol 1998; 10: 743–757.

    Article  CAS  PubMed  Google Scholar 

  64. Van Bockstaele EJ, Peoples J, Valentino RJ . A.E. Bennett research award. Anatomic basis for differential regulation of the rostrolateral peri-locus coeruleus region by limbic afferents. Biol Psychiatry 1999; 46: 1352–1363.

    Article  CAS  PubMed  Google Scholar 

  65. Van Bockstaele EJ, Bajic D, Proudfit H, Valentino RJ . Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol Behav 2001; 73: 273–283.

    Article  CAS  PubMed  Google Scholar 

  66. Van Bockstaele EJ, Colago EE, Valentino RJ . Corticotropin-releasing factor-containing axon terminals synapse onto catecholamine dendrites and may presynaptically modulate other afferents in the rostral pole of the nucleus locus coeruleus in the rat brain. J Comp Neurol 1996; 364: 523–534.

    Article  CAS  PubMed  Google Scholar 

  67. Million M, Wang L, Stenzel-Poore MP, Coste SC, Yuan PQ, Lamy C et al. Enhanced pelvic responses to stressors in female CRF-overexpressing mice. Am J Physiol Regul Integr Comp Physiol 2007; 292: R1429–R1438.

    Article  CAS  PubMed  Google Scholar 

  68. Heinrichs SC, Min H, Tamraz S, Carmouche M, Boehme SA, Vale WW . Anti-sexual and anxiogenic behavioral consequences of corticotropin-releasing factor overexpression are centrally mediated. Psychoneuroendocrinology 1997; 22: 215–224.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Kile McFadden and Dr Susan Wood for their technical support. This work was supported by USPHS Grant MH40008 to RJV, MH084423 and MH092438 to DAB, and MH0754047 and MH089800 to SGB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Bangasser.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bangasser, D., Reyes, B., Piel, D. et al. Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression. Mol Psychiatry 18, 166–173 (2013). https://doi.org/10.1038/mp.2012.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.24

Keywords

This article is cited by

Search

Quick links