Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Pathological parainflammation and endoplasmic reticulum stress in depression: potential translational targets through the CNS insulin, klotho and PPAR-γ systems

Abstract

Major depression and bipolar disorder are heterogeneous conditions in which there can be dysregulation of (1) the stress system response, (2) its capacity for counterregulation after danger has passed and (3) the phase in which damaging molecules generated by the stress response are effectively neutralized. The response to stress and depressed mood share common circuitries and mediators, and each sets into motion not only similar affective and cognitive changes, but also similar systemic manifestations. We focus here on two highly interrelated processes, parainflammation and endoplasmic reticulum (ER) stress, each of which can potentially interfere with all phases of a normal stress response in affective illness, including adaptive neuroplastic changes and the ability to generate neural stem cells. Parainflammation is an adaptive response of the innate immune system that occurs in the context of stressors to which we were not exposed during our early evolution, including overfeeding, underactivity, aging, artificial lighting and novel foodstuffs and drugs. We postulate that humans were not exposed through evolution to the current level of acute or chronic social stressors, and hence, that major depressive illness is associated with a parainflammatory state. ER stress refers to a complex program set into motion when the ER is challenged by the production or persistence of more proteins than it can effectively fold. If the ER response is overwhelmed, substantial amounts of calcium are released into the cytoplasm, leading to apoptosis. Parainflammation and ER stress generally occur simultaneously. We discuss three highly interrelated mediators that can effectively decrease parainflammation and ER stress, namely the central insulin, klotho and peroxisome proliferator-activated receptor-γ (PPAR-γ) systems and propose that these systems may represent conceptually novel therapeutic targets for the amelioration of the affective, cognitive and systemic manifestations of major depressive disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gold PW, Goodwin FK, Chrousos GP . Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (1). N Engl J Med 1988; 319: 348–353.

    Article  CAS  PubMed  Google Scholar 

  2. Gold PW, Goodwin FK, Chrousos GP . Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (2). N Engl J Med 1988; 319: 413–420.

    Article  CAS  PubMed  Google Scholar 

  3. Kendler KS, Karkowski LM, Prescott CA . Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 1999; 156: 837–841.

    Article  CAS  PubMed  Google Scholar 

  4. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386–389.

    Article  CAS  PubMed  Google Scholar 

  5. Kim JM, Stewart R, Kim SW, Yang SJ, Shin IS, Kim YH et al. Interactions between life stressors and susceptibility genes (5-HTTLPR and BDNF) on depression in Korean elders. Biol Psychiatry 2007; 62: 423–428.

    Article  CAS  PubMed  Google Scholar 

  6. Mackiewicz KL, Sarinopoulos I, Cleven KL, Nitschke JB . The effect of anticipation and the specificity of sex differences for amygdala and hippocampus function in emotional memory. Proc Natl Acad Sci USA 2006; 103: 14200–14205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Phelps EA, LeDoux JE . Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 2005; 48: 175–187.

    Article  CAS  PubMed  Google Scholar 

  8. Gold PW, Chrousos GP . Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 2002; 7: 254–275.

    Article  CAS  PubMed  Google Scholar 

  9. Brandi LS, Santoro D, Natali A, Altomonte F, Baldi S, Frascerra S et al. Insulin resistance of stress: sites and mechanisms. Clin Sci 1993; 85: 525–535.

    Article  CAS  Google Scholar 

  10. Gold PW, Wong ML, Goldstein DS, Gold HK, Ronsaville DS, Esler M et al. Cardiac implications of increased arterial entry and reversible 24-h central and peripheral norepinephrine levels in melancholia. Proc Natl Acad Sci USA 2005; 102: 8303–8308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wong ML, Kling MA, Munson PJ, Listwak S, Licinio J, Prolo P et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc Natl Acad Sci USA 2000; 97: 325–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kling MA, Alesci S, Csako G, Costello R, Luckenbaugh DA, Bonne O et al. Sustained low-grade pro-inflammatory state in unmedicated, remitted women with major depressive disorder as evidenced by elevated serum levels of the acute phase proteins C-reactive protein and serum amyloid A. Biol Psychiatry 2007; 62: 309–313.

    Article  CAS  PubMed  Google Scholar 

  13. Eskandari F, Mistry S, Martinez PE, Torvik S, Kotila C, Sebring N et al. Younger, premenopausal women with major depressive disorder have more abdominal fat and increased serum levels of prothrombotic factors: implications for greater cardiovascular risk. Metabolism 2005; 54: 918–924.

    Article  CAS  PubMed  Google Scholar 

  14. Wulsin LR, Evans JC, Vasan RS, Murabito JM, Kelly-Hayes M, Benjamin EJ . Depressive symptoms, coronary heart disease, and overall mortality in the Framingham Heart Study. Psychosom Med 2005; 67: 697–702.

    Article  PubMed  Google Scholar 

  15. Eaton WW, Armenian H, Gallo J, Pratt L, Ford DE . Depression and risk for onset of type II diabetes. A prospective population-based study. Diabetes Care 1996; 19: 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  16. Michelson D, Stratakis C, Hill L, Reynolds J, Galliven E, Chrousos G et al. Bone mineral density in women with depression. N Engl J Med 1996; 335: 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  17. Penninx BW, Beekman AT, Honig A, Deeg DJ, Schoevers RA, van Eijk JT et al. Depression and cardiac mortality: results from a community-based longitudinal study. Arch Gen Psychiatry 2001; 58: 221–227.

    Article  CAS  PubMed  Google Scholar 

  18. Chang CK, Hayes RD, Perera G, Broadbent MT, Fernandes AC, Lee WE et al. Life expectancy at birth for people with serious mental illness and other major disorders from a secondary mental health care case register in London. PLoS One 6: e19590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sachar EJ, Hellman L, Roffwarg HP, Halpern FS, Fukushima DK, Gallagher TF . Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Arch Gen Psychiatry 1973; 28: 19–24.

    Article  CAS  PubMed  Google Scholar 

  20. Sachar EJ, Hellman L, Fukushima DK, Gallagher TF . Cortisol production in depressive illness. A clinical and biochemical clarification. Arch Gen Psychiatry 1970; 23: 289–298.

    Article  CAS  PubMed  Google Scholar 

  21. Gold PW, Goodwin FK, Wehr T, Rebar R, Sack R . Growth-hormone and prolactin response to levodopa in affective illness. Lancet 1976; 2: 1308–1309.

    Article  CAS  PubMed  Google Scholar 

  22. Young EA, Korszun A . The hypothalamic-pituitary-gonadal axis in mood disorders. Endocrinol Metab Clin North Am 2002; 31: 63–78.

    Article  CAS  PubMed  Google Scholar 

  23. Wong ML, Dong C, Esposito K, Thakur S, Liu W, Elashoff RM et al. Elevated stress-hemoconcentration in major depression is normalized by antidepressant treatment: secondary analysis from a randomized, double-blind clinical trial and relevance to cardiovascular disease risk. PLoS One 2008; 3: e2350.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Joseph-Vanderpool JR, Rosenthal NE, Chrousos GP, Wehr TA, Skwerer R, Kasper S et al. Abnormal pituitary-adrenal responses to corticotropin-releasing hormone in patients with seasonal affective disorder: clinical and pathophysiological implications. J Clin Endocrinol Metab 1991; 72: 1382–1387.

    Article  CAS  PubMed  Google Scholar 

  25. Gold PW, Chrousos G, Kellner C, Post R, Roy A, Augerinos P et al. Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. Am J Psychiatry 1984; 141: 619–627.

    Article  CAS  PubMed  Google Scholar 

  26. Gold PW, Loriaux DL, Roy A, Kling MA, Calabrese JR, Kellner CH et al. Responses to corticotropin-releasing hormone in the hypercortisolism of depression and Cushing’s disease. Pathophysiologic and diagnostic implications. N Engl J Med 1986; 314: 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  27. Thakker-Varia S, Krol JJ, Nettleton J, Bilimoria PM, Bangasser DA, Shors TJ et al. The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 2007; 27: 12156–12167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR et al. Antidepressant actions of the exercise-regulated gene VGF. Nat Med 2007; 13: 1476–1482.

    Article  CAS  PubMed  Google Scholar 

  29. Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–827.

    Article  CAS  PubMed  Google Scholar 

  30. Price JL, Drevets WC . Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 16: 61–71.

    Article  PubMed  Google Scholar 

  31. Ladoux J . Brain mechanisms of extinction. Biol Psychiatry 2006; 60: 329–336.

    Article  Google Scholar 

  32. Cook SC, Wellman CL . Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 2004; 60: 236–248.

    Article  PubMed  Google Scholar 

  33. Watanabe Y, Gould E, McEwen BS . Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 1992; 588: 341–345.

    Article  CAS  PubMed  Google Scholar 

  34. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 2004; 56: 640–650.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim JJ, Foy MR, Thompson RF . Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc Natl Acad Sci USA 1996; 93: 4750–4753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lisman JE, Grace AA . The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 2005; 46: 703–713.

    Article  CAS  PubMed  Google Scholar 

  37. Wong ML, Loddick SA, Bongiorno PB, Gold PW, Rothwell NJ, Licinio J . Focal cerebral ischemia induces CRH mRNA in rat cerebral cortex and amygdala. NeuroReport 1995; 6: 1785–1788.

    Article  CAS  PubMed  Google Scholar 

  38. Heinrichs SC, Koob GF . Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 2004; 311: 427–440.

    Article  CAS  PubMed  Google Scholar 

  39. Carr JA . Stress, neuropeptides, and feeding behavior: a comparative perspective. Integr Comp Biol 2002; 42: 582–590.

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez MM, Valatx JL . Effect of intracerebroventricular administration of alpha-helical CRH (9-41) on the sleep/waking cycle in rats under normal conditions or after subjection to an acute stressful stimulus. J Sleep Res 1997; 6: 164–170.

    Article  CAS  PubMed  Google Scholar 

  41. Petraglia F, Sutton S, Vale W, Plotsky P . Corticotropin-releasing factor decreases plasma luteinizing hormone levels in female rats by inhibiting gonadotropin-releasing hormone release into hypophysial-portal circulation. Endocrinology 1987; 120: 1083–1088.

    Article  CAS  PubMed  Google Scholar 

  42. Habib KE, Weld KP, Rice KC, Pushkas J, Champoux M, Listwak S et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Acad Sci USA 2000; 97: 6079–6084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaplan MS, Hinds JW . Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 1977; 197: 1092–1094.

    Article  CAS  PubMed  Google Scholar 

  44. Altman J, Das GD . Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124: 319–335.

    Article  CAS  PubMed  Google Scholar 

  45. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  PubMed  Google Scholar 

  46. Sahay A, Hen R . Adult hippocampal neurogenesis in depression. Nat Neurosci 2007; 10: 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  47. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 2008; 64: 293–301.

    Article  CAS  PubMed  Google Scholar 

  48. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C et al. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 2011; 16: 1177–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A . Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000; 47: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  51. van Praag H, Christie BR, Sejnowski TJ, Gage FH . Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 1999; 96: 13427–13431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cimini A, Ceru MP . Emerging roles of peroxisome proliferator-activated receptors (PPARs) in the regulation of neural stem cells proliferation and differentiation. Stem Cell Rev 2008; 4: 293–303.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao C, Deng W, Gage FH . Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132: 645–660.

    Article  CAS  PubMed  Google Scholar 

  54. Raison CL, Capuron L, Miller AH . Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006; 27: 24–31.

    Article  CAS  PubMed  Google Scholar 

  55. Sluzewska A, Rybakowski JK, Laciak M, Mackiewicz A, Sobieska M, Wiktorowicz K . Interleukin-6 serum levels in depressed patients before and after treatment with fluoxetine. Ann NY Acad Sci 1995; 762: 474–476.

    Article  CAS  PubMed  Google Scholar 

  56. Lesperance F, Frasure-Smith N, Theroux P, Irwin M . The association between major depression and levels of soluble intercellular adhesion molecule 1, interleukin-6, and C-reactive protein in patients with recent acute coronary syndromes. Am J Psychiatry 2004; 161: 271–277.

    Article  PubMed  Google Scholar 

  57. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H . Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 2000; 22: 370–379.

    Article  CAS  PubMed  Google Scholar 

  58. Ford DE, Erlinger TP . Depression and C-reactive protein in US adults: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med 2004; 164: 1010–1014.

    Article  PubMed  Google Scholar 

  59. Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab 2005; 90: 2522–2530.

    Article  CAS  PubMed  Google Scholar 

  60. Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpe S, Maes M . IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 2005; 10: 538–544.

    Article  CAS  PubMed  Google Scholar 

  61. Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V . Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology 1999; 40: 171–176.

    Article  CAS  PubMed  Google Scholar 

  62. Wong ML, Bongiorno PB, al-Shekhlee A, Esposito A, Khatri P, Licinio J . IL-1 beta, IL-1 receptor type I and iNOS gene expression in rat brain vasculature and perivascular areas. NeuroReport 1996; 7: 2445–2448.

    Article  CAS  PubMed  Google Scholar 

  63. Medzhitov R . Origin and physiological roles of inflammation. Nature 2008; 454: 428–435.

    Article  CAS  PubMed  Google Scholar 

  64. Hotamisligil GS . Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010; 140: 900–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bedrosian T, Weil Z, Nelson R . Chronic dim light at night provokes reversible depression-like phenotype: possible role for TNF. Mol Psychiatry 2012 (in press).

  66. Medzhitov R . Inflammation 2010: new adventures of an old flame. Cell 2010; 140: 771–776.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D . Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008; 135: 61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hotamisligil GS . Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 2005; 54 (Suppl 2): S73–S78.

    Article  CAS  PubMed  Google Scholar 

  69. Hotamisligil GS . Endoplasmic reticulum stress and inflammation in obesity and type 2 diabetes. Novartis Found Symp 2007; 286: 86–94, discussion 94–88, 162–163, 196–203.

    Article  PubMed  Google Scholar 

  70. Hotamisligil GS . Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int J Obes (Lond) 2008; 32 (Suppl 7): S52–S54.

    Article  CAS  Google Scholar 

  71. Zhao L, Ackerman SL . Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 2006; 18: 444–452.

    Article  CAS  PubMed  Google Scholar 

  72. Schroder M . Endoplasmic reticulum stress responses. Cell Mol Life Sci 2008; 65: 862–894.

    Article  CAS  PubMed  Google Scholar 

  73. Kim I, Xu W, Reed JC . Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008; 7: 1013–1030.

    Article  CAS  PubMed  Google Scholar 

  74. Xu C, Bailly-Maitre B, Reed JC . Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005; 115: 2656–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu H, Bowes RC, van de Water B, Sillence C, Nagelkerke JF, Stevens JL . Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem 1997; 272: 21751–21759.

    Article  CAS  PubMed  Google Scholar 

  76. Machado-Vieira R, Pivovarova NB, Stanika RI, Yuan P, Wang Y, Zhou R et al. The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol Psychiatry 2011; 69: 344–352.

    Article  CAS  PubMed  Google Scholar 

  77. Kitao Y, Ozawa K, Miyazaki M, Tamatani M, Kobayashi T, Yanagi H et al. Expression of the endoplasmic reticulum molecular chaperone (ORP150) rescues hippocampal neurons from glutamate toxicity. J Clin Invest 2001; 108: 1439–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L et al. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 2007; 27: 901–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin JH, Walter P, Yen TS . Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 2008; 3: 399–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gregor MG, Hotamisligil GS . Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 2007; 48: 1905–1914.

    Article  CAS  PubMed  Google Scholar 

  81. Boden G . Endoplasmic reticulum stress: another link between obesity and insulin resistance/inflammation? Diabetes 2009; 58: 518–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306: 457–461.

    Article  CAS  PubMed  Google Scholar 

  83. Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 2003; 35: 171–175.

    Article  CAS  PubMed  Google Scholar 

  84. Hayashi A, Kasahara T, Iwamoto K, Ishiwata M, Kametani M, Kakiuchi C et al. The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J Biol Chem 2007; 282: 34525–34534.

    Article  CAS  PubMed  Google Scholar 

  85. Chen B, Wang JF, Young LT . Chronic valproate treatment increases expression of endoplasmic reticulum stress proteins in the rat cerebral cortex and hippocampus. Biol Psychiatry 2000; 48: 658–664.

    Article  CAS  PubMed  Google Scholar 

  86. Bown CD, Wang JF, Chen B, Young LT . Regulation of ER stress proteins by valproate: therapeutic implications. Bipolar Disord 2002; 4: 145–151.

    Article  CAS  PubMed  Google Scholar 

  87. Kakiuchi C, Ishigaki S, Oslowski CM, Fonseca SG, Kato T, F Urano . Valproate, a mood stabilizer, induces WFS1 expression and modulates its interaction with ER stress protein GRP94. PLoS One 2009; 4: e4134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim AJ, Shi Y, Austin RC, Werstuck GH . Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 2005; 118 (Pt 1): 89–99.

    Article  CAS  PubMed  Google Scholar 

  89. Dill J, Wang H, Zhou F, Li S . Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci 2008; 28: 8914–8928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nahorski SR, Ragan CI, Challiss RA . Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. Trends Pharmacol Sci 1991; 12: 297–303.

    Article  CAS  PubMed  Google Scholar 

  91. Hiroi T, Wei H, Hough C, Leeds P, Chuang DM . Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, GRP78 and Bcl-2. Pharmacogenomics J 2005; 5: 102–111.

    Article  CAS  PubMed  Google Scholar 

  92. Kato T . Molecular neurobiology of bipolar disorder: a disease of ‘mood-stabilizing neurons’? Trends Neurosci 2008; 31: 495–503.

    Article  CAS  PubMed  Google Scholar 

  93. Hunsberger JG, Machado-Vieira R, Austin DR, Zarate C, Chuang DM, Chen G et al. Bax inhibitor 1, a modulator of calcium homeostasis, confers affective resilience. Brain Res 2011; 1403: 19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chae HJ, Kim HR, Xu C, Bailly-Maitre B, Krajewska M, Krajewski S et al. BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell 2004; 15: 355–366.

    Article  CAS  PubMed  Google Scholar 

  95. Pearson S, Schmidt M, Patton G, Dwyer T, Blizzard L, Otahal P et al. Depression and insulin resistance: cross-sectional associations in young adults. Diabetes Care 2010; 33: 1128–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Timonen M, Laakso M, Jokelainen J, Rajala U, Meyer-Rochow VB, Keinanen-Kiukaanniemi S . Insulin resistance and depression: cross sectional study. BMJ 2005; 330: 17–18.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Okamura F, Tashiro A, Utumi A, Imai T, Suchi T, Tamura D et al. Insulin resistance in patients with depression and its changes during the clinical course of depression: minimal model analysis. Metabolism 2000; 49: 1255–1260.

    Article  CAS  PubMed  Google Scholar 

  98. Winokur A, Maislin G, Phillips JL, Amsterdam JD . Insulin resistance after oral glucose tolerance testing in patients with major depression. Am J Psychiatry 1988; 145: 325–330.

    Article  CAS  PubMed  Google Scholar 

  99. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005; 146: 4192–4199.

    Article  CAS  PubMed  Google Scholar 

  100. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009; 296: E1003–E1012.

    Article  CAS  PubMed  Google Scholar 

  101. Koch L, Wunderlich FT, Seibler J, Konner AC, Hampel B, Irlenbusch S et al. Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest 2008; 118: 2132–2147.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gelling RW, Morton GJ, Morrison CD, Niswender KD, Myers MG, Rhodes CJ et al. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab 2006; 3: 67–73.

    Article  CAS  PubMed  Google Scholar 

  103. Tonra JR, Ono M, Liu X, Garcia K, Jackson C, Yancopoulos GD et al. Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Lepr(db)/lepr(db) mice. Diabetes 1999; 48: 588–594.

    Article  CAS  PubMed  Google Scholar 

  104. Yue JT, Lam TK . Lipid sensing and insulin resistance in the brain. Cell Metab 2012; 15: 646–655.

    Article  CAS  PubMed  Google Scholar 

  105. Schwartz MW, Porte D Jr . Diabetes, obesity, and the brain. Science 2005; 307: 375–379.

    Article  CAS  PubMed  Google Scholar 

  106. Chiu SL, Chen CM, Cline HT . Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 2008; 58: 708–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Abbott MA, Wells DG, Fallon JR . The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 1999; 19: 7300–7308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Figdor R, Allen AM et al. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 1987; 121: 1562–1570.

    Article  CAS  PubMed  Google Scholar 

  109. Scita G, Confalonieri S, Lappalainen P, Suetsugu S . IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 2008; 18: 52–60.

    Article  CAS  PubMed  Google Scholar 

  110. Tsakiridis T, Tong P, Matthews B, Tsiani E, Bilan PJ, Klip A et al. Role of the actin cytoskeleton in insulin action. Microsc Res Tech 1999; 47: 79–92.

    Article  CAS  PubMed  Google Scholar 

  111. Choi J, Ko J, Racz B, Burette A, Lee JR, Kim S et al. Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J Neurosci 2005; 25: 869–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. El Messari S, Ait-Ikhlef A, Ambroise DH, Penicaud L, Arluison M . Expression of insulin-responsive glucose transporter GLUT4 mRNA in the rat brain and spinal cord: an in situ hybridization study. J Chem Neuroanat 2002; 24: 225–242.

    Article  CAS  PubMed  Google Scholar 

  113. Apelt J, Mehlhorn G, Schliebs R . Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain. J Neurosci Res 1999; 57: 693–705.

    Article  CAS  PubMed  Google Scholar 

  114. Baura GD, Foster DM, Porte D, Kahn SE, Bergman RN et al. Saturable transport of insulin from plasma into the CNS system of dogs in vivo. A mechanism for regulaed insulin delivery to the brain. J Clin Invest 1993; 92: 1824–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schwartz MW, Bergman RN, Kahn SE, Taborsky GJ, Fisher LD, Sipols AJ et al. Evidence for entry of plasma insulin into cerebrospinal fluid through an intermediate compartment in dogs. Quantitative aspects and implications for transport. J Clin Invest 1991; 88: 1272–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Banks WA, Jaspan JB, Kastin AJ . Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 1997; 18: 1257–1262.

    Article  CAS  PubMed  Google Scholar 

  117. Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D . Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 1998; 50: 164–168.

    Article  CAS  PubMed  Google Scholar 

  118. Kern W, Benedict C, Schultes B, Plohr F, Moser A, Born J et al. Low cerebrospinal fluid insulin levels in obese humans. Diabetologia 2006; 49: 2790–2792.

    Article  CAS  PubMed  Google Scholar 

  119. Baura GD, Foster DM, Kaiyala K, Porte D, Kahn SE, Schwartz MW . Insulin transport from plasma into the central nervous system is inhibited by dexamethasone in dogs. Diabetes 1996; 45: 86–90.

    Article  CAS  PubMed  Google Scholar 

  120. Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 2008; 57: 2438–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zemel MB . Nutritional and endocrine modulation of intracellular calcium: implications in obesity, insulin resistance and hypertension. Mol Cell Biochem 1998; 188: 129–136.

    Article  CAS  PubMed  Google Scholar 

  122. Craft S . Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 2007; 4: 147–152.

    Article  CAS  PubMed  Google Scholar 

  123. Craft S . Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 2006; 20: 298–301.

    Article  CAS  PubMed  Google Scholar 

  124. Craft S, Watson GS . Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 2004; 3: 169–178.

    Article  CAS  PubMed  Google Scholar 

  125. Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA 2005; 102: 3105–3110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Russell SJ, Kahn CR . Endocrine regulation of ageing. Nat Rev Mol Cell Biol 2007; 8: 681–691.

    Article  CAS  PubMed  Google Scholar 

  127. Taguchi A, Wartschow LM, White MF . Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 2007; 317: 369–372.

    Article  CAS  PubMed  Google Scholar 

  128. Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 2008; 22: 807–818.

    Article  CAS  PubMed  Google Scholar 

  129. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390: 45–51.

    Article  CAS  PubMed  Google Scholar 

  130. Kuro-o M . Klotho as a regulator of oxidative stress and senescence. Biol Chem 2008; 389: 233–241.

    Article  CAS  PubMed  Google Scholar 

  131. Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J 2003; 17: 50–52.

    Article  CAS  PubMed  Google Scholar 

  132. Saito Y, Yamagishi T, Nakamura T, Ohyama Y, Aizawa H, Suga T et al. Klotho protein protects against endothelial dysfunction. Biochem Biophys Res Commun 1998; 248: 324–329.

    Article  CAS  PubMed  Google Scholar 

  133. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P et al. Suppression of aging in mice by the hormone Klotho. Science 2005; 309: 1829–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A et al. alpha-Klotho as a regulator of calcium homeostasis. Science 2007; 316: 1615–1618.

    Article  CAS  PubMed  Google Scholar 

  135. de Groot T, Bindels RJ, Hoenderop JG . TRPV5: an ingeniously controlled calcium channel. Kidney Int 2008; 74: 1241–1246.

    Article  CAS  PubMed  Google Scholar 

  136. Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M, Takei K . Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 2004; 29: 91–99.

    Article  CAS  PubMed  Google Scholar 

  137. Reaven G . The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin North Am 2004; 33: 283–303.

    Article  PubMed  Google Scholar 

  138. Shoelson SE, Lee J, Goldfine AB . Inflammation and insulin resistance. J Clin Invest 2006; 116: 1793–1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Moreno S, Farioli-Vecchioli S, Ceru MP . Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 2004; 123: 131–145.

    Article  CAS  PubMed  Google Scholar 

  140. Michalik L, Wahli W . Involvement of PPAR nuclear receptors in tissue injury and wound repair. J Clin Invest 2006; 116: 598–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 2006; 34 (Pt 6): 1341–1346.

    Article  CAS  PubMed  Google Scholar 

  142. Yi JH, Park SW, Kapadia R, Vemuganti R . Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem Int 2007; 50: 1014–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tureyen K, Kapadia R, Bowen KK, Satriotomo I, Liang J, Feinstein DL et al. Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents. J Neurochem 2007; 101: 41–56.

    Article  CAS  PubMed  Google Scholar 

  144. Aoun P, Watson DG, Simpkins JW . Neuroprotective effects of PPARgamma agonists against oxidative insults in HT-22 cells. Eur J Pharmacol 2003; 472: 65–71.

    Article  CAS  PubMed  Google Scholar 

  145. Ren Y, Sun C, Sun Y, Tan H, Wu Y, Cui B et al. PPAR gamma protects cardiomyocytes against oxidative stress and apoptosis via Bcl-2 upregulation. Vascul Pharmacol 2009; 51: 169–174.

    Article  CAS  PubMed  Google Scholar 

  146. Evans-Molina C, Robbins RD, Kono T, Tersey SA, Vestermark GL, Nunemaker CS et al. Peroxisome proliferator-activated receptor gamma activation restores islet function in diabetic mice through reduction of endoplasmic reticulum stress and maintenance of euchromatin structure. Mol Cell Biol 2009; 29: 2053–2067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Luna-Medina R, Cortes-Canteli M, Sanchez-Galiano S, Morales-Garcia JA, Martinez A, Santos A et al. NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders. J Neurosci 2007; 27: 5766–5776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Aoun P, Simpkins JW, Agarwal N . Role of PPAR-gamma ligands in neuroprotection against glutamate-induced cytotoxicity in retinal ganglion cells. Invest Ophthalmol Vis Sci 2003; 44: 2999–3004.

    Article  PubMed  Google Scholar 

  149. Festuccia WT, Oztezcan S, Laplante M, Berthiaume M, Michel C, Dohgu S et al. Peroxisome proliferator-activated receptor-gamma-mediated positive energy balance in the rat is associated with reduced sympathetic drive to adipose tissues. Endocrinology 2008; 149: 2121–2130.

    Article  CAS  PubMed  Google Scholar 

  150. Argmann C, Dobrin R, Heikkinen S, Aubertin A, Poilly L, Koutnikova H et al. Ppar-g is a key driver of longevity in the rat. Plos Genet 2009; 5: e100752.

    Article  CAS  Google Scholar 

  151. Zhang H, Li Y, Fan Y, Zhao B, Guan Y, Chien S et al. Klotho is a target gene of PPAR-gamma. Kidney Int 2008; 74: 732–739.

    Article  CAS  PubMed  Google Scholar 

  152. Zhang R, Zheng F . PPAR-gamma and aging: one link through klotho? Kidney Int 2008; 74: 702–704.

    Article  CAS  PubMed  Google Scholar 

  153. Sadaghiani MS, Javadi-Paydar M, Gharedaghi MH, Fard YY, Dehpour AR . Antidepressant-like effect of pioglitazone in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway. Behav Brain Res 224: 336–343.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P W Gold.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, P., Licinio, J. & Pavlatou, M. Pathological parainflammation and endoplasmic reticulum stress in depression: potential translational targets through the CNS insulin, klotho and PPAR-γ systems. Mol Psychiatry 18, 154–165 (2013). https://doi.org/10.1038/mp.2012.167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.167

Keywords

This article is cited by

Search

Quick links