Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of genetic variation in the causation of mental illness: an evolution-informed framework

Abstract

The apparently large genetic contribution to the aetiology of mental illness presents a formidable puzzle. Unlike common physical disorders, mental illness usually has an onset early in the reproductive age and is associated with substantial reproductive disadvantage. Therefore, genetic variants associated with vulnerability to mental illness should be under strong negative selection pressure and be eliminated from the genetic pool through natural selection. Still, mental disorders are common and twin studies indicate a strong genetic contribution to their aetiology. Several theories have been advanced to explain the paradox of high heritability and reproductive disadvantage associated with the same common phenotype, but none provides a satisfactory explanation for all types of mental illness. At the same time, identification of the molecular substrate underlying the large genetic contribution to the aetiology of mental illness is proving more difficult than expected. The quest for genetic variants associated with vulnerability to mental illness is predicated upon the common disease/common variant (CDCV) hypothesis. On the basis of a summary of evidence, it is concluded that the CDCV hypothesis is untenable for most types of mental illness. An alternative evolution-informed framework is proposed, which suggests that gene–environment interactions and rare genetic variants constitute most of the genetic contribution to mental illness. Common mental illness with mild reproductive disadvantage is likely to have a large contribution from interactions between common genetic variants and environmental exposures. Severe mental illness that confers strong reproductive disadvantage is likely to have a large and pleiotropic contribution from rare variants of recent origin. This framework points to a need for a paradigm change in genetic research to enable major progress in elucidating the aetiology of mental illness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ng MYM, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 2008; 14: 774–785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lander ES . The new genomics: global views of biology. Science 1996; 274: 536–539.

    Article  CAS  PubMed  Google Scholar 

  3. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  4. Iles MM . What can genome-wide association studies tell us about the genetics of common disease? PLoS Genet 2008; 4: e33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wellcome Trust Case Control Consortium. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  CAS  Google Scholar 

  6. Muglia P, Tozzi F, Galwey NW, Francks C, Upmanyu R, Kong XQ et al. Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol Psychiatry 2009 (in press).

  7. Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 2008; 14: 359–375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  9. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keller MC, Miller G . Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best? Behav Brain Sci 2006; 29: 385–404.

    Article  PubMed  Google Scholar 

  11. Crow TJ . Aetiology of schizophrenia: an evolutionary theory. Int Clin Psychopharmacol 1995; 10 (Suppl 3): 49–56.

    PubMed  Google Scholar 

  12. Dudley R . Fermenting fruit and the historical ecology of ethanol ingestion: is alcoholism in modern humans an evolutionary hangover? Addiction 2002; 97: 381–388.

    Article  PubMed  Google Scholar 

  13. Mealey L . The sociobiology of sociopathy: an integrated evolutionary model. Behav Brain Sci 1995; 18: 523–599.

    Article  Google Scholar 

  14. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE . Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62: 593–602.

    Article  PubMed  Google Scholar 

  15. Rutter M . Incidence of autism spectrum disorders: changes over time and their meaning. Acta Paediatr 2005; 94: 2–15.

    Article  CAS  PubMed  Google Scholar 

  16. Hoek HW . Incidence, prevalence and mortality of anorexia nervosa and other eating disorders. Curr Opin Psychiatry 2006; 19: 389–394.

    Article  PubMed  Google Scholar 

  17. McGrath J, Saha S, Chant D, Welham J . Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008; 30: 67–76.

    Article  PubMed  Google Scholar 

  18. Bebbington P, Ramana R . The epidemiology of bipolar affective disorder. Soc Psychiatry Psychiatr Epidemiol 1995; 30: 279–292.

    Article  CAS  PubMed  Google Scholar 

  19. Andrade L, Caraveo-Anduaga JJ, Berglund P, Bijl RV, de GR, Vollebergh W et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. Int J Methods Psychiatr Res 2003; 12: 3–21.

    Article  PubMed  Google Scholar 

  20. Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 1996; 276: 293–299.

    Article  CAS  PubMed  Google Scholar 

  21. Husain N, Creed F, Tomenson B . Depression and social stress in Pakistan. Psychol Med 2000; 30: 395–402.

    Article  CAS  PubMed  Google Scholar 

  22. Lee S, Tsang A, Huang YQ, He YL, Liu ZR, Zhang MY et al. The epidemiology of depression in metropolitan China. Psychol Med 2008; 39: 735–747.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kirkbride JB, Fearon P, Morgan C, Dazzan P, Morgan K, Tarrant J et al. Heterogeneity in incidence rates of schizophrenia and other psychotic syndromes: findings from the 3-center AeSOP study. Arch Gen Psychiatry 2006; 63: 250–258.

    Article  PubMed  Google Scholar 

  24. Hoek HW, van Harten PN, Hermans KM, Katzman MA, Matroos GE, Susser ES . The incidence of anorexia nervosa on Curacao. Am J Psychiatry 2005; 162: 748–752.

    Article  PubMed  Google Scholar 

  25. Pavlova B, Uher R, Dragomirecka E, Papezova H . Trends in hospital admissions for eating disorders in a country undergoing a socio-cultural transition, the Czech Republic 1981–2005. Soc Psychiatry Psychiatr Epidemiol 2009 (in press).

  26. Harris EC, Barraclough B . Excess mortality of mental disorder. Br J Psychiatry 1998; 173: 11–53.

    Article  CAS  PubMed  Google Scholar 

  27. Hiroeh U, Appleby L, Mortensen PB, Dunn G . Death by homicide, suicide, and other unnatural causes in people with mental illness: a population-based study. Lancet 2001; 358: 2110–2112.

    Article  CAS  PubMed  Google Scholar 

  28. Hiroeh U, Kapur N, Webb R, Dunn G, Mortensen PB, Appleby L . Deaths from natural causes in people with mental illness: a cohort study. J Psychosom Res 2008; 64: 275–283.

    Article  PubMed  Google Scholar 

  29. Papadopoulos FC, Ekbom A, Brandt L, Ekselius L . Excess mortality, causes of death and prognostic factors in anorexia nervosa. Br J Psychiatry 2009; 194: 10–17.

    Article  PubMed  Google Scholar 

  30. Joukamaa M, Heliovaara M, Knekt P, Aromaa A, Raitasalo R, Lehtinen V . Mental disorders and cause-specific mortality. Br J Psychiatry 2001; 179: 498–502.

    Article  CAS  PubMed  Google Scholar 

  31. Mouridsen SE, Bronnum-Hansen H, Rich B, Isager T . Mortality and causes of death in autism spectrum disorders: an update. Autism 2008; 12: 403–414.

    Article  PubMed  Google Scholar 

  32. Shavelle RM, Strauss DJ, Pickett J . Causes of death in autism. J Autism Dev Disord 2001; 31: 569–576.

    Article  CAS  PubMed  Google Scholar 

  33. Osby U, Brandt L, Correia N, Ekbom A, Sparen P . Excess mortality in bipolar and unipolar disorder in Sweden. Arch Gen Psychiatry 2001; 58: 844–850.

    Article  CAS  PubMed  Google Scholar 

  34. Cuijpers P, Smit F . Excess mortality in depression: a meta-analysis of community studies. J Affect Disord 2002; 72: 227–236.

    Article  PubMed  Google Scholar 

  35. Murphy JM, Burke Jr JD, Monson RR, Horton NJ, Laird NM, Lesage A et al. Mortality associated with depression: a forty-year perspective from the Stirling County Study. Soc Psychiatry Psychiatr Epidemiol 2008; 43: 594–601.

    Article  PubMed  Google Scholar 

  36. Ringback WG, Rosen M . Is perceived nervousness and anxiety a predictor of premature mortality and severe morbidity? A longitudinal follow up of the Swedish survey of living conditions. J Epidemiol Community Health 2005; 59: 794–798.

    Article  PubMed Central  Google Scholar 

  37. Allgulander C, Lavori PW . Excess mortality among 3302 patients with ‘pure’ anxiety neurosis. Arch Gen Psychiatry 1991; 48: 599–602.

    Article  CAS  PubMed  Google Scholar 

  38. Larsen FW, Mouridsen SE . The outcome in children with childhood autism and Asperger syndrome originally diagnosed as psychotic. A 30-year follow-up study of subjects hospitalized as children. Eur Child Adolesc Psychiatry 1997; 6: 181–190.

    Article  CAS  PubMed  Google Scholar 

  39. Brinch M, Isager T, Tolstrup K . Anorexia nervosa and motherhood: reproduction pattern and mothering behavior of 50 women. Acta Psychiatr Scand 1988; 77: 611–617.

    Article  CAS  PubMed  Google Scholar 

  40. Svensson AC, Lichtenstein P, Sandin S, Hultman CM . Fertility of first-degree relatives of patients with schizophrenia: a three generation perspective. Schizophr Res 2007; 91: 238–245.

    Article  PubMed  Google Scholar 

  41. Baron M, Risch N, Mendlewicz J . Differential fertility in bipolar affective illness. J Affect Disord 1982; 4: 103–112.

    Article  CAS  PubMed  Google Scholar 

  42. King RB . Subfecundity and anxiety in a nationally representative sample. Soc Sci Med 2003; 56: 739–751.

    Article  PubMed  Google Scholar 

  43. Williams KE, Marsh WK, Rasgon NL . Mood disorders and fertility in women: a critical review of the literature and implications for future research. Hum Reprod Update 2007; 13: 607–616.

    Article  PubMed  Google Scholar 

  44. Haukka J, Suvisaari J, Lonnqvist J . Fertility of patients with schizophrenia, their siblings, and the general population: a cohort study from 1950 to 1959 in Finland. Am J Psychiatry 2003; 160: 460–463.

    Article  PubMed  Google Scholar 

  45. Webb RT, Abel KM, Pickles AR, Appleby L, King-Hele SA, Mortensen PB . Mortality risk among offspring of psychiatric inpatients: a population-based follow-up to early adulthood. Am J Psychiatry 2006; 163: 2170–2177.

    Article  PubMed  Google Scholar 

  46. Weissman MM, Wickramaratne P, Nomura Y, Warner V, Pilowsky D, Verdeli H . Offspring of depressed parents: 20 years later. Am J Psychiatry 2006; 163: 1001–1008.

    Article  PubMed  Google Scholar 

  47. Bespalova IN, Buxbaum JD . Disease susceptibility genes for autism. Ann Med 2003; 35: 274–281.

    Article  CAS  PubMed  Google Scholar 

  48. Folstein S, Rutter M . Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry 1977; 18: 297–321.

    Article  CAS  PubMed  Google Scholar 

  49. Kieseppa T, Partonen T, Haukka J, Kaprio J, Lonnqvist J . High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry 2004; 161: 1814–1821.

    Article  PubMed  Google Scholar 

  50. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A . The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 2003; 60: 497–502.

    Article  PubMed  Google Scholar 

  51. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  52. Bulik CM, Sullivan PF, Tozzi F, Furberg H, Lichtenstein P, Pedersen NL . Prevalence, heritability, and prospective risk factors for anorexia nervosa. Arch Gen Psychiatry 2006; 63: 305–312.

    Article  PubMed  Google Scholar 

  53. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    Article  CAS  PubMed  Google Scholar 

  54. McGuffin P, Katz R, Watkins S, Rutherford J . A hospital-based twin register of the heritability of DSM-IV unipolar depression. Arch Gen Psychiatry 1996; 53: 129–136.

    Article  CAS  PubMed  Google Scholar 

  55. Hettema JM, Neale MC, Kendler KS . A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry 2001; 158: 1568–1578.

    Article  CAS  PubMed  Google Scholar 

  56. Taylor PJ . The unreliability of high human heritability estimates and small shared effects of growing up in the same family. Biol Theory 2008; 2: 387–397.

    Article  Google Scholar 

  57. Taylor PJ . Heritability and heterogeneity: on the limited relevance of heritability in investigating genetic and environmental factors. Biol Theory 2006; 1: 150–164.

    Article  Google Scholar 

  58. Rhee SH, Waldman ID . Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull 2002; 128: 490–529.

    Article  PubMed  Google Scholar 

  59. Rice TK . Familial resemblance and heritability. Adv Genet 2008; 60: 35–49.

    Article  PubMed  Google Scholar 

  60. Shao H, Burrage LC, Sinasac DS, Hill AE, Ernest SR, O’Brien W et al. Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc Natl Acad Sci USA 2008; 105: 19910–19914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van Swinderen B, Greenspan RJ . Flexibility in a gene network affecting a simple behavior in Drosophila melanogaster. Genetics 2005; 169: 2151–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Uher R . Forum: the case for gene–environment interactions in psychiatry. Curr Opin Psychiatry 2008; 21: 318–321.

    Article  PubMed  Google Scholar 

  63. Purcell S, Sham P . Variance components models for gene–environment interaction in quantitative trait locus linkage analysis. Twin Res 2002; 5: 572–576.

    Article  PubMed  Google Scholar 

  64. Richardson K, Norgate S . The equal environments assumption of classical twin studies may not hold. Br J Educ Psychol 2005; 75: 339–350.

    Article  PubMed  Google Scholar 

  65. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM . Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  66. Crow JF . The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 2000; 1: 40–47.

    Article  CAS  PubMed  Google Scholar 

  67. Crow JF . Development. There's something curious about paternal-age effects. Science 2003; 301: 606–607.

    Article  CAS  PubMed  Google Scholar 

  68. Hare EH, Moran PA . Raised parental age in psychiatric patients: evidence for the constitutional hypothesis. Br J Psychiatry 1979; 134: 169–177.

    Article  CAS  PubMed  Google Scholar 

  69. Laursen TM, Munk-Olsen T, Nordentoft M, Bo MP . A comparison of selected risk factors for unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia from a Danish population-based cohort. J Clin Psychiatry 2007; 68: 1673–1681.

    Article  PubMed  Google Scholar 

  70. Gillberg C . Parental age in child psychiatric clinic attenders. Acta Psychiatr Scand 1982; 66: 471–478.

    CAS  PubMed  Google Scholar 

  71. Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S et al. Advancing paternal age and autism. Arch Gen Psychiatry 2006; 63: 1026–1032.

    Article  PubMed  Google Scholar 

  72. Durkin MS, Maenner MJ, Newschaffer CJ, Lee LC, Cunniff CM, Daniels JL et al. Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol 2008; 168: 1268–1276.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, Susser ES . Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry 2001; 58: 361–367.

    Article  CAS  PubMed  Google Scholar 

  74. Frans EM, Sandin S, Reichenberg A, Lichtenstein P, Langstrom N, Hultman CM . Advancing paternal age and bipolar disorder. Arch Gen Psychiatry 2008; 65: 1034–1040.

    Article  PubMed  Google Scholar 

  75. Nesse RM . Natural selection and the elusiveness of happiness. Philos Trans R Soc Lond B Biol Sci 2004; 359: 1333–1347.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sherman JA . Evolutionary origins of bipolar disorder (EOBD). Psycoloquy 2001; 12 (28), Article 1.

  77. Guisinger S . Adapted to flee famine: adding an evolutionary perspective on anorexia nervosa. Psychol Rev 2003; 110: 745–761.

    Article  PubMed  Google Scholar 

  78. Mayo O . The rise and fall of the common disease–common variant (CD-CV) hypothesis: how the sickle cell disease paradigm led us all astray (or did it?). Twin Res Hum Genet 2007; 10: 793–804.

    Article  PubMed  Google Scholar 

  79. Di Rienzo A, Hudson RR . An evolutionary framework for common diseases: the ancestral-susceptibility model. Trends Genet 2005; 21: 596–601.

    Article  CAS  PubMed  Google Scholar 

  80. Gluckman P, Hanson M . Mismatch: Why Our Bodies No Longer Fit Our World. Oxford University Press: Oxford, New York, 2006.

    Google Scholar 

  81. Corbo RM, Scacchi R . Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ‘thrifty’ allele? Ann Hum Genet 1999; 63: 301–310.

    Article  CAS  PubMed  Google Scholar 

  82. Ng CH . The stigma of mental illness in Asian cultures. Aust N Z J Psychiatry 1997; 31: 382–390.

    Article  CAS  PubMed  Google Scholar 

  83. Shibre T, Negash A, Kullgren G, Kebede D, Alem A, Fekadu A et al. Perception of stigma among family members of individuals with schizophrenia and major affective disorders in rural Ethiopia. Soc Psychiatry Psychiatr Epidemiol 2001; 36: 299–303.

    Article  CAS  PubMed  Google Scholar 

  84. Pritchard JK . Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001; 69: 124–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boyce WT, Ellis BJ . Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Dev Psychopathol 2005; 17: 271–301.

    Article  PubMed  Google Scholar 

  86. Dingemanse NJ, Both C, Drent PJ, Tinbergen JM . Fitness consequences of avian personalities in a fluctuating environment. Proc Biol Sci 2004; 271: 847–852.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kimura M . A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc Natl Acad Sci USA 1965; 54: 731–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kryukov GV, Pennacchio LA, Sunyaev SR . Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am J Hum Genet 2007; 80: 727–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nachman MW, Crowell SL . Estimate of the mutation rate per nucleotide in humans. Genetics 2000; 156: 297–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Malaspina D, Corcoran C, Fahim C, Berman A, Harkavy-Friedman J, Yale S et al. Paternal age and sporadic schizophrenia: evidence for de novo mutations. Am J Med Genet 2002; 114: 299–303.

    Article  PubMed  PubMed Central  Google Scholar 

  91. MacIntyre DJ, Blackwood DH, Porteous DJ, Pickard BS, Muir WJ . Chromosomal abnormalities and mental illness. Mol Psychiatry 2003; 8: 275–287.

    Article  CAS  PubMed  Google Scholar 

  92. Folstein SE, Rosen-Sheidley B . Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001; 2: 943–955.

    Article  CAS  PubMed  Google Scholar 

  93. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  94. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al. Strong association of de novo copy number mutations with autism. Science 2007; 316: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moffitt TE, Caspi A, Rutter M . Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry 2005; 62: 473–481.

    Article  CAS  PubMed  Google Scholar 

  96. Edelman GM, Gally JA . Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 2001; 98: 13763–13768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Uher R . The implications of gene–environment interactions in depression: will cause inform cure? Mol Psychiatry 2008; 13: 1070–1078.

    Article  CAS  PubMed  Google Scholar 

  98. Sham P . Types of gene–environment interplay and their statistical properties. In: MacCabe J, O’Daly O, Murray R, McGuffin P, and Wright P (eds). Beyond Nature and Nurture in Psychiatry: Genes, Environment and their Interplay. Informa Healthcare: London, 2006, pp 20–30.

    Google Scholar 

  99. Kendler KS, Kessler RC, Walters EE, MacLean C, Neale MC, Heath AC, Eaves LJ . Stressful life events, genetic liability, and onset of an episode of major depression in women. Am J Psychiatry 1995; 152: 833–842.

    Article  CAS  PubMed  Google Scholar 

  100. Uher R, McGuffin P . The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Mol Psychiatry 2008; 13: 131–146.

    Article  CAS  PubMed  Google Scholar 

  101. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN . Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177–182.

    Article  CAS  PubMed  Google Scholar 

  102. Hemminki K, Forsti A, Bermejo JL . The ‘common disease-common variant’ hypothesis and familial risks. PLoS ONE 2008; 3: e2504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rutter M . Introduction: whither gene–environment interactions? Novartis Found Symp 2008; 293: 1–12.

    CAS  PubMed  Google Scholar 

  104. Uher R . Gene–environment interaction: overcoming methodological challenges. Novartis Found Symp 2008; 293: 13–26.

    Article  CAS  PubMed  Google Scholar 

  105. A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry 2009; 14: 10–17.

  106. Nobile M, Rusconi M, Bellina M, Marino C, Giorda R, Carlet O et al. The influence of family structure, the TPH2 G-703 T and the 5-HTTLPR serotonergic genes upon affective problems in children aged 10–14 years. J Child Psychol Psychiatry 2009; 50: 317–325.

    Article  PubMed  Google Scholar 

  107. Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE . MAOA, maltreatment, and gene–environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol Psychiatry 2006; 11: 903–913.

    Article  CAS  PubMed  Google Scholar 

  108. Martinez FD . Gene–environment interaction in complex diseases: asthma as an illustrative case. Novartis Found Symp 2008; 293: 184–192.

    Article  CAS  PubMed  Google Scholar 

  109. Monroe SM, Reid MW . Gene–environment interactions in depression research: genetic polymorphisms and life-stress polyprocedures. Psychol Sci 2008; 19: 947–956.

    Article  PubMed  Google Scholar 

  110. McClelland GH, Judd CM . Statistical difficulties of detecting interactions and moderator effects. Psychol Bull 1993; 114: 376–390.

    Article  CAS  PubMed  Google Scholar 

  111. Khoury MJ, Wacholder S . Invited commentary: from genome-wide association studies to gene–environment-wide interaction studies—challenges and opportunities. Am J Epidemiol 2009; 169: 227–230.

    Article  PubMed  Google Scholar 

  112. Chen YH, Lin HW, Liu H . Two-stage analysis for gene–environment interaction utilizing both case-only and family-based analysis. Genet Epidemiol 2009; 33: 95–104.

    Article  CAS  PubMed  Google Scholar 

  113. Murcray CE, Lewinger JP, Gauderman WJ . Gene–environment interaction in genome-wide association studies. Am J Epidemiol 2009; 169: 219–226.

    Article  PubMed  Google Scholar 

  114. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Guo W, Lin S . Generalized linear modeling with regularization for detecting common disease rare haplotype association. Genet Epidemiol 2008; 33: 308–316.

    Article  Google Scholar 

  116. Eyre-Walker A, Keightley PD, Smith NG, Gaffney D . Quantifying the slightly deleterious mutation model of molecular evolution. Mol Biol Evol 2002; 19: 2142–2149.

    Article  CAS  PubMed  Google Scholar 

  117. Evans DM, Barrett JC, Cardon LR . To what extent do scans of non-synonymous SNPs complement denser genome-wide association studies? Eur J Hum Genet 2008; 16: 718–723.

    Article  CAS  PubMed  Google Scholar 

  118. Hirschhorn JN, Altshuler D . Once and again-issues surrounding replication in genetic association studies. J Clin Endocrinol Metab 2002; 87: 4438–4441.

    Article  CAS  PubMed  Google Scholar 

  119. Krueger RF . The structure of common mental disorders. Arch Gen Psychiatry 1999; 56: 921–926.

    Article  CAS  PubMed  Google Scholar 

  120. Cardno AG, Rijsdijk FV, Sham PC, Murray RM, McGuffin P . A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry 2002; 159: 539–545.

    Article  PubMed  Google Scholar 

  121. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ . Major depression and generalized anxiety disorder. Same genes, (partly) different environments? Arch Gen Psychiatry 1992; 49: 716–722.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Michael Rutter, Cathryn M Lewis, Ulrike Schmidt, Peter McGuffin and Iain Campbell for their helpful comments on previous versions of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Uher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uher, R. The role of genetic variation in the causation of mental illness: an evolution-informed framework. Mol Psychiatry 14, 1072–1082 (2009). https://doi.org/10.1038/mp.2009.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.85

Keywords

This article is cited by

Search

Quick links