Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and molecular genetics

The mutational oncoprint of recurrent cytogenetic abnormalities in adult patients with de novo acute myeloid leukemia

Abstract

Recurrent chromosomal abnormalities and gene mutations detected at the time of diagnosis of acute myeloid leukemia (AML) are associated with particular disease features, treatment response and survival of AML patients, and are used to denote specific disease entities in the World Health Organization classification of myeloid neoplasms and acute leukemia. However, large studies that integrate cytogenetic and comprehensive mutational information are scarce. We created a comprehensive oncoprint of mutations associated with recurrent cytogenetic findings by combining the information on mutational patterns of 80 cancer- and leukemia-associated genes with cytogenetic findings in 1603 adult patients with de novo AML. We show unique differences in the mutational profiles among major cytogenetic subsets, identify novel associations between recurrent cytogenetic abnormalities and both specific gene mutations and gene functional groups, and reveal differences in cytogenetic and mutational features between patients younger than 60 years and those aged 60 years or older. The identified associations between cytogenetic and molecular genetic data may help guide mutation testing in AML, and result in more focused application of targeted therapy in patients with de novo AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 4
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD . Acute myeloid leukemia. N Engl J Med 2015; 373: 1136–1152.

    Article  Google Scholar 

  2. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  3. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374: 2209–2221.

    Article  CAS  Google Scholar 

  4. Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Görlich D et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 2016; 128: 686–698.

    Article  CAS  Google Scholar 

  5. Stone R, Mandrekar S, Sanford BL, Geyer S, Bloomfield CD, Dohner K et al. The multi-kinase inhibitor midostaurin (M) prolongs survival compared with placebo (P) in combination with daunorubicin (D)/cytarabine (C) induction (ind), high-dose C consolidation (consol), and as maintenance (maint) therapy in newly diagnosed acute myeloid leukemia (AML) patients (pts) age 18-60 with FLT3 mutations (muts): an international prospective randomized (rand) p-controlled double-blind trial (CALGB 10603/RATIFY [Alliance]). Blood 2015; 126: (abstract 6).

  6. Grimwade D, Ivey A, Huntly BJP . Molecular landscape of acute myeloid leukemia in younger adults and its clinical significance. Blood 2016; 127: 29–41.

    Article  CAS  Google Scholar 

  7. Marcucci G, Maharry K, Radmacher MD, Mrózek K, Vukosavljevic T, Paschka P et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B study. J Clin Oncol 2008; 26: 5078–5087.

    Article  CAS  Google Scholar 

  8. Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T . Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer 2005; 43: 227–238.

    Article  CAS  Google Scholar 

  9. Rücker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype and dismal outcome. Blood 2012; 119: 2114–2121.

    Article  Google Scholar 

  10. Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E et al. C-kit mutations in core binding factor leukemias. Blood 2000; 95: 726–727.

    CAS  Google Scholar 

  11. Paschka P, Marcucci G, Ruppert AS, Mrózek K, Chen H, Kittles RA et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B study. J Clin Oncol 2006; 24: 3904–3911.

    Article  CAS  Google Scholar 

  12. Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD . Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007; 109: 431–448.

    Article  Google Scholar 

  13. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  Google Scholar 

  14. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  Google Scholar 

  15. Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med 1994; 331: 896–903.

    Article  CAS  Google Scholar 

  16. Kolitz JE, George SL, Marcucci G, Vij R, Powell BL, Allen SL et al. P-glycoprotein inhibition using valspodar (PSC-833) does not improve outcomes for patients younger than age 60 years with newly diagnosed acute myeloid leukemia: Cancer and Leukemia Group B study 19808. Blood 2010; 116: 1413–1421.

    Article  CAS  Google Scholar 

  17. Blum W, Sanford BL, Klisovic R, DeAngelo DJ, Uy G, Powell BL et al. Maintenance therapy with decitabine in younger adults with acute myeloid leukemia in first remission: a phase 2 Cancer and Leukemia Group B study (CALGB 10503). Leukemia 2017; 31: 34–39.

    Article  CAS  Google Scholar 

  18. Kolitz JE, George SL, Dodge RK, Hurd DD, Powell BL, Allen SL et al. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B study 9621. J Clin Oncol 2004; 22: 4290–4301.

    Article  CAS  Google Scholar 

  19. Moore JO, Dodge RK, Amrein PC, Kolitz J, Lee EJ, Powell B et al. Granulocyte-colony stimulating factor (filgrastim) accelerates granulocyte recovery after intensive postremission chemotherapy for acute myeloid leukemia with aziridinyl benzoquinone and mitoxantrone: Cancer and Leukemia Group B study 9022. Blood 1997; 89: 780–788.

    CAS  PubMed  Google Scholar 

  20. Moore JO, George SL, Dodge RK, Amrein PC, Powell BL, Kolitz JE et al. Sequential multiagent chemotherapy is not superior to high-dose cytarabine alone as postremission intensification therapy for acute myeloid leukemia in adults under 60 years of age: Cancer and Leukemia Group B study 9222. Blood 2005; 105: 3420–3427.

    Article  CAS  Google Scholar 

  21. Baer MR, George SL, Caligiuri MA, Sanford BL, Bothun SM, Mrózek K et al. Low-dose interleukin-2 immunotherapy does not improve outcome of patients age 60 years and older with acute myeloid leukemia in first complete remission: Cancer and Leukemia Group B study 9720. J Clin Oncol 2008; 26: 4934–4939.

    Article  CAS  Google Scholar 

  22. Marcucci G, Moser B, Blum W, Stock W, Wetzler M, Kolitz JE et al. A phase III randomized trial of intensive induction and consolidation chemotherapy ±oblimersen, a pro-apoptotic Bcl-2 antisense oligonucleotide in untreated acute myeloid leukemia patients >60 years old. J Clin Oncol 2007; 25 (suppl): 360s (abstract 7012).

    Google Scholar 

  23. Attar EC, Johnson JL, Amrein PC, Lozanski G, Wadleigh M, DeAngelo DJ et al. Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. J Clin Oncol 2013; 31: 923–929.

    Article  CAS  Google Scholar 

  24. Stone RM, Berg DT, George SL, Dodge RK, Paciucci PA, Schulman P et al. Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. N Engl J Med 1995; 332: 1671–1677.

    Article  CAS  Google Scholar 

  25. Lee EJ, George SL, Caligiuri M, Szatrowski TP, Powell BL, Lemke S et al. Parallel phase I studies of daunorubicin given with cytarabine and etoposide with or without the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age or older with acute myeloid leukemia: results of Cancer and Leukemia Group B study 9420. J Clin Oncol 1999; 17: 2831–2839.

    Article  CAS  Google Scholar 

  26. Mrózek K, Carroll AJ, Maharry K, Rao KW, Patil SR, Pettenati MJ et al. Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. Int J Oncol 2008; 33: 239–244.

    PubMed  PubMed Central  Google Scholar 

  27. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013; 31: 213–219.

    Article  CAS  Google Scholar 

  28. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.

    Article  CAS  Google Scholar 

  29. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G et al. Integrative genomics viewer. Nat Biotechnol 2011; 29: 24–26.

    Article  CAS  Google Scholar 

  30. Kroll KW, Eisfeld A-K, Lozanski G, Bloomfield CD, Byrd JC, Blachly JS . MuCor: mutation aggregation and correlation. Bioinformatics 2016; 32: 1557–1558.

    Article  CAS  Google Scholar 

  31. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391–2405.

    Article  CAS  Google Scholar 

  32. Mrózek K, Heerema NA, Bloomfield CD . Cytogenetics in acute leukemia. Blood Rev 2004; 18: 115–136.

    Article  Google Scholar 

  33. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116: 354–365.

    Article  CAS  Google Scholar 

  34. Schoch C, Haferlach T, Bursch S, Gerstner D, Schnittger S, Dugas M et al. Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Genes Chromosomes Cancer 2002; 35: 20–29.

    Article  Google Scholar 

  35. Mrózek K . Acute myeloid leukemia with a complex karyotype. Semin Oncol 2008; 35: 365–377.

    Article  Google Scholar 

  36. Duployez N, Marceau-Renaut A, Boissel N, Petit A, Bucci M, Geffroy S et al. Comprehensive molecular profiling of core binding factor acute myeloid leukemia. Blood 2016; 127: 2451–2459.

    Article  CAS  Google Scholar 

  37. Eisfeld A-K, Kohlschmidt J, Schwind S, Nicolet D, Blachly JS, Orwick S et al. Mutations in the CCND1 and CCND2 genes are frequent events in adult patients with t(8;21)(q22;q22) acute myeloid leukemia. Leukemia 2016; e-pub ahead of print 15 November 2016 doi:10.1038/leu.2016.332.

  38. Faber ZJ, Chen X, Gedman AL, Boggs K, Cheng J, Ma J et al. The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 2016; 48: 1551–1556.

    Article  CAS  Google Scholar 

  39. Bhatnagar B, Blachly JS, Kohlschmidt J, Eisfeld AK, Volinia S, Nicolet D et al. Clinical features and gene- and microRNA-expression patterns in adult acute leukemia patients with t(11;19)(q23;p13.1) and t(11;19q23;p13.3). Leukemia 2016; 30: 1586–1589.

    Article  CAS  Google Scholar 

  40. Lavallee V-P, Baccelli I, Krosl J, Wilhelm B, Barabé F, Gendron P et al. The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias. Nat Genet 2015; 47: 1030–1037.

    Article  CAS  Google Scholar 

  41. Slovak ML, Gundacker H, Bloomfield CD, Dewald G, Appelbaum FR, Larson RA et al. A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare 'poor prognosis' myeloid malignancies. Leukemia 2006; 20: 1295–1297.

    Article  CAS  Google Scholar 

  42. Nacheva EP, Grace CD, Brazma D, Gancheva K, Howard-Reeves J, Rai L et al. Does BCR/ABL1 positive acute myeloid leukaemia exist? Br J Haematol 2013; 161: 541–550.

    Article  CAS  Google Scholar 

  43. Gröschel S, Sanders MA, Hoogenboezem R, Zeilemaker A, Havermans M, Erpelinck C et al. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways. Blood 2015; 125: 133–139.

    Article  Google Scholar 

  44. Eisfeld A-K, Kohlschmidt J, Mrózek K, Blachly JS, Nicolet D, Kroll K et al. Adult acute myeloid leukemia with trisomy 11 as the sole abnormality is characterized by the presence of five distinct gene mutations: MLL-PTD, DNMT3A, U2AF1 FLT3-ITD and IDH2. Leukemia 2016; 30: 2254–2258.

    Article  CAS  Google Scholar 

  45. Lee SC, Dvinge H, Kim E, Cho H, Micol JB, Chung YR et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med 2016; 22: 672–678.

    Article  CAS  Google Scholar 

  46. Breems DA, Van Putten WLJ, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KBJ, Mellink CHM et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol 2008; 26: 4791–4797.

    Article  Google Scholar 

  47. Pasquini MC, Zhang MJ, Medeiros BC, Armand P, Hu ZH, Nishihori T et al. Hematopoietic cell transplantation outcomes in monosomal karyotype myeloid malignancies. Biol Blood Marrow Transplant 2016; 22: 248–257.

    Article  Google Scholar 

  48. Mrózek K, Marcucci G, Nicolet D, Maharry KS, Becker H, Whitman SP et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol 2012; 30: 4515–4523.

    Article  Google Scholar 

  49. Schoch C, Schnittger S, Kern W, Dugas M, Hiddemann W, Haferlach T . Acute myeloid leukemia with recurring chromosome abnormalities as defined by the WHO-classification: incidence of subgroups, additional genetic abnormalities, FAB subtypes and age distribution in an unselected series of 1,897 patients with acute myeloid leukemia. Haematologica 2003; 88: 351–352.

    PubMed  Google Scholar 

  50. Moorman AV, Roman E, Willett EV, Dovey GJ, Cartwright RA, Morgan GJ . Karyotype and age in acute myeloid leukemia. Are they linked? Cancer Genet Cytogenet 2001; 126: 155–161.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients who consented to participate in these clinical trials and the families who supported them; to Donna Bucci and the CALGB/Alliance Leukemia Tissue Bank at The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA for sample processing and storage services and Lisa J. Sterling and Christine Finks for data management. Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers U10CA031946, U10CA033601, U10CA180821 and U10CA180882 (to the Alliance for Clinical Trials in Oncology), U10CA101140, U10CA180850, U10CA180866, U10CA18086, U10CA032291, U10CA035279, U10CA047545, U10CA059518, CA077658, CA016058, CA140158, CA180821, CA180882, CA196171, R35 CA197734 and 5P30 CA016058; the Coleman Leukemia Research Foundation; The D Warren Brown Foundation, the Pelotonia Fellowship Program (A-KE); and by an allocation of computing resources from The Ohio Supercomputer Center.

Author contributions

A-KE, KM, JCB and CDB contributed to the study design; A-KE, KM, AdlC, JCB and CDB contributed to the data interpretation, A-KE, KM, JK, JCB and CDB wrote the manuscript; A-KE and SO performed laboratory-based research; JSB and KWK performed the data processing; JK and DN performed statistical analysis; RMS, AJC, KM, JEK, BLP, ESW and CDB were involved directly or indirectly in the care of patients and/or sample procurement. All authors read and agreed on the final version of the manuscript.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A-K Eisfeld, K Mrózek or C D Bloomfield.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisfeld, AK., Mrózek, K., Kohlschmidt, J. et al. The mutational oncoprint of recurrent cytogenetic abnormalities in adult patients with de novo acute myeloid leukemia. Leukemia 31, 2211–2218 (2017). https://doi.org/10.1038/leu.2017.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.86

This article is cited by

Search

Quick links