Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Novel inhibition of PIM2 kinase has significant anti-tumor efficacy in multiple myeloma

Abstract

The PIM kinase family (PIM1, 2 and 3) have a central role in integrating growth and survival signals, and are expressed in a wide range of solid and hematological malignancies. We now confirm that PIM2 is overexpressed in multiple myeloma (MM) patients, and within MM group it is overexpressed in the high-risk MF subset (activation of proto-oncogenes MAF/MAFB). This is consistent with our finding of PIM2’s role in key signaling pathways (IL-6, CD28 activation) that confer chemotherapy resistance in MM cells. These studies have identified a novel PIM2-selective non-ATP competitive inhibitor (JP11646) that has a 4 to 760-fold greater suppression of MM proliferation and viability than ATP-competitive PIM inhibitors. This increased efficacy is due not only to the inhibition of PIM2 kinase activity, but also to a novel mechanism involving specific downregulation of PIM2 mRNA and protein expression not seen with the ATP competitive inhibitors. Treatment with JP11646 in xenogeneic myeloma murine models demonstrated significant reduction in tumor burden and increased median survival. Altogether our findings suggest the existence of previously unrecognized feedback loop(s) where PIM2 kinase activity regulates PIM2 gene expression in malignant cells, and that JP11646 represents a novel class of PIM2 inhibitors that interdicts this feedback.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 1984; 37: 141–150.

    Article  CAS  Google Scholar 

  2. Nawijn MC, Alendar A, Berns A . For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 2011; 11: 23–34.

    Article  CAS  Google Scholar 

  3. Yan B, Zemskova M, Holder S, Chin V, Kraft A, Koskinen PJ et al. The PIM-2 kinase phosphorylates BAD on serine 112 and reverses BAD-induced cell death. J Biol Chem 2003; 278: 45358–45367.

    Article  CAS  Google Scholar 

  4. Siu A, Virtanen C, Jongstra JPIM . kinase isoform specific regulation of MIG6 expression and EGFR signaling in prostate cancer cells. Oncotarget 2011; 2: 1134–1144.

    Article  Google Scholar 

  5. Narlik-Grassow M, Blanco-Aparicio C, Carnero A . The PIM family of serine/threonine kinases in cancer. Med Res Rev 2014; 34: 136–159.

    Article  CAS  Google Scholar 

  6. Gong J, Wang J, Ren K, Liu C, Li B, Shi Y . Serine/threonine kinase Pim-2 promotes liver tumorigenesis induction through mediating survival and preventing apoptosis of liver cell. J Surg Res 2009; 153: 17–22.

    Article  CAS  Google Scholar 

  7. Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB . The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 2003; 17: 1841–1854.

    Article  CAS  Google Scholar 

  8. Bachmann M, Moroy T . The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 2005; 37: 726–730.

    Article  CAS  Google Scholar 

  9. Adam K, Lambert M, Lestang E, Champenois G, Dusanter-Fourt I, Tamburini J et al. Control of Pim2 kinase stability and expression in transformed human haematopoietic cells. Biosci Rep 2015; 35: 6.

    Article  Google Scholar 

  10. Hallermann C, Niermann C, Fischer RJ, Schulze HJ . New prognostic relevant factors in primary cutaneous diffuse large B-cell lymphomas. J Am Acad Dermatol 2007; 56: 588–597.

    Article  Google Scholar 

  11. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J . PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010; 95: 1004–1015.

    Article  CAS  Google Scholar 

  12. Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M et al. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 2005; 105: 1759–1767.

    Article  CAS  Google Scholar 

  13. Asano J, Nakano A, Oda A, Amou H, Hiasa M, Takeuchi K et al. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells. Leukemia 2011; 25: 1182–1188.

    Article  CAS  Google Scholar 

  14. Claudio JO, Masih-Khan E, Tang H, Goncalves J, Voralia M, Li ZH et al. A molecular compendium of genes expressed in multiple myeloma. Blood 2002; 100: 2175–2186.

    Article  CAS  Google Scholar 

  15. Keane NA, Reidy M, Natoni A, Raab MS, O'Dwyer M . Targeting the Pim kinases in multiple myeloma. Blood Cancer J 2015; 5: e325.

    Article  CAS  Google Scholar 

  16. Nachbaur DM, Herold M, Maneschg A, Huber H . Serum levels of interleukin-6 in multiple myeloma and other hematological disorders: correlation with disease activity and other prognostic parameters. Ann Hematol 1991; 62: 54–58.

    Article  CAS  Google Scholar 

  17. Puthier D, Derenne S, Barille S, Moreau P, Harousseau JL, Bataille R et al. Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells. Br J Haematol 1999; 107: 392–395.

    Article  CAS  Google Scholar 

  18. Tu Y, Renner S, Xu F, Fleishman A, Taylor J, Weisz J et al. BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res 1998; 58: 256–262.

    CAS  PubMed  Google Scholar 

  19. Lu J, Zavorotinskaya T, Dai Y, Niu XH, Castillo J, Sim J et al. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood 2013; 122: 1610–1620.

    Article  CAS  Google Scholar 

  20. Hiasa M, Teramachi J, Oda A, Amachi R, Harada T, Nakamura S et al. Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma. Leukemia 2015; 29: 207–217.

    Article  CAS  Google Scholar 

  21. Ramachandran J, Santo L, Siu KT, Panaroni C, Raje N . Pim2 is important for regulating DNA damage response in multiple myeloma cells. Blood Cancer J 2016; 6: e462.

    Article  CAS  Google Scholar 

  22. Garcia PD, Langowski JL, Wang Y, Chen M, Castillo J, Fanton C et al. Pan-PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin Cancer Res 2014; 20: 1834–1845.

    Article  CAS  Google Scholar 

  23. Cervantes-Gomez F, Chen LS, Orlowski RZ, Gandhi V . Biological effects of the Pim kinase inhibitor, SGI-1776, in multiple myeloma. Clin Lymphoma Myeloma Leuk 2013; 13: S317–S329.

    Article  Google Scholar 

  24. Keeton EK, McEachern K, Dillman KS, Palakurthi S, Cao Y, Grondine MR et al. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood 2014; 123: 905–913.

    Article  CAS  Google Scholar 

  25. Foulks JM, Carpenter KJ, Luo B, Xu Y, Senina A, Nix R et al. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Neoplasia 2014; 16: 403–412.

    Article  CAS  Google Scholar 

  26. Chesi M, Matthews GM, Garbitt VM, Palmer SE, Shortt J, Lefebure M et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood 2012; 120: 376–385.

    Article  CAS  Google Scholar 

  27. Meja K, Stengel C, Sellar R, Huszar D, Davies BR, Gale RE et al. PIM and AKT kinase inhibitors show synergistic cytotoxicity in acute myeloid leukaemia that is associated with convergence on mTOR and MCL1 pathways. Br J Haematol 2014; 167: 69–79.

    Article  CAS  Google Scholar 

  28. Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 2004; 24: 6104–6115.

    Article  CAS  Google Scholar 

  29. Nair JR, Carlson LM, Koorella C, Rozanski CH, Byrne GE, Bergsagel PL et al. CD28 expressed on malignant plasma cells induces a prosurvival and immunosuppressive microenvironment. J Immunol 2011; 187: 1243–1253.

    Article  CAS  Google Scholar 

  30. Ausubel FM . Current Protocols in Molecular Biology. John Wiley & Sons, Inc: Hoboken, New Jersey, USA, 1987.

    Google Scholar 

  31. Bahlis NJ, King AM, Kolonias D, Carlson LM, Liu HY, Hussein MA et al. CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood 2007; 109: 5002–5010.

    Article  CAS  Google Scholar 

  32. Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 2012; 22: 345–358.

    Article  CAS  Google Scholar 

  33. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  Google Scholar 

  34. Cheng Y, Prusoff WH . Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 1973; 22: 3099–3108.

    Article  CAS  Google Scholar 

  35. Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N . 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998; 12: 502–513.

    Article  CAS  Google Scholar 

  36. Hideshima T, Nakamura N, Chauhan D, Anderson KC . Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001; 20: 5991–6000.

    Article  CAS  Google Scholar 

  37. Baumann P, Schneider L, Mandl-Weber S, Oduncu F, Schmidmaier R . Simultaneous targeting of PI3K and mTOR with NVP-BGT226 is highly effective in multiple myeloma. Anticancer Drugs 2012; 23: 131–138.

    Article  CAS  Google Scholar 

  38. Le Gouill S, Podar K, Harousseau JL, Anderson KC . Mcl-1 regulation and its role in multiple myeloma. Cell Cycle 2004; 3: 1259–1262.

    Article  CAS  Google Scholar 

  39. Matsuo J, Tsukumo Y, Sakurai J, Tsukahara S, Park HR, Shin-ya K et al. Preventing the unfolded protein response via aberrant activation of 4E-binding protein 1 by versipelostatin. Cancer Sci 2009; 100: 327–333.

    Article  CAS  Google Scholar 

  40. Morwick T . Pim kinase inhibitors: a survey of the patent literature. Expert Opin Ther Pat 2010; 20: 193–212.

    Article  CAS  Google Scholar 

  41. Wingett D, Reeves R, Magnuson NS . Stability changes in pim-1 proto-oncogene mRNA after mitogen stimulation of normal lymphocytes. J Immunol 1991; 147: 3653–3659.

    CAS  PubMed  Google Scholar 

  42. Uddin N, Kim RK, Yoo KC, Kim YH, Cui YH, Kim IG et al. Persistent activation of STAT3 by PIM2-driven positive feedback loop for epithelial-mesenchymal transition in breast cancer. Cancer Sci 2015; 106: 718–725.

    Article  CAS  Google Scholar 

  43. Bansal K, Kapoor N, Narayana Y, Puzo G, Gilleron M, Balaji KN . PIM2 Induced COX-2 and MMP-9 expression in macrophages requires PI3K and Notch1 signaling. PLoS ONE 2009; 4: e4911.

    Article  Google Scholar 

  44. Yu Z, Zhao X, Ge Y, Zhang T, Huang L, Zhou X et al. A regulatory feedback loop between HIF-1alpha and PIM2 in HepG2 cells. PLoS ONE 2014; 9: e88301.

    Article  Google Scholar 

  45. Narayana Y, Bansal K, Sinha AY, Kapoor N, Puzo G, Gilleron M et al. SOCS3 expression induced by PIM2 requires PKC and PI3K signaling. Mol Immunol 2009; 46: 2947–2954.

    Article  CAS  Google Scholar 

  46. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 1988; 332: 83–85.

    Article  CAS  Google Scholar 

  47. Hardin J, MacLeod S, Grigorieva I, Chang R, Barlogie B, Xiao H et al. Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood 1994; 84: 3063–3070.

    CAS  PubMed  Google Scholar 

  48. Schwab G, Siegall CB, Aarden LA, Neckers LM, Nordan RP . Characterization of an interleukin-6-mediated autocrine growth loop in the human multiple myeloma cell line, U266. Blood 1991; 77: 587–593.

    CAS  PubMed  Google Scholar 

  49. Nair JR, Rozanski C, Lee KP . CD28: old dog, new tricks. CD28 in plasma cell/multiple myeloma biology. Adv Exp Med Biol 2009; 633: 55–69.

    Article  CAS  Google Scholar 

  50. Rozanski CH, Utley A, Carlson LM, Farren MR, Murray M, Russell LM et al. CD28 Promotes Plasma Cell Survival, Sustained Antibody Responses, and BLIMP-1 Upregulation through Its Distal PYAP Proline Motif. J Immunol 2015; 194: 4717–4728.

    Article  CAS  Google Scholar 

  51. Murray ME, Gavile CM, Nair JR, Koorella C, Carlson LM, Buac D et al. CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma. Blood 2014; 123: 3770–3779.

    Article  CAS  Google Scholar 

  52. Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 2007; 13: 1467–1475.

    Article  CAS  Google Scholar 

  53. Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T . Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 1999; 11: 709–719.

    Article  CAS  Google Scholar 

  54. Li J, Peet GW, Balzarano D, Li X, Massa P, Barton RW et al. Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. J Biol Chem 2001; 276: 18579–18590.

    Article  CAS  Google Scholar 

  55. Basu S, Golovina T, Mikheeva T, June CH, Riley JL . Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol 2008; 180: 5794–5798.

    Article  CAS  Google Scholar 

  56. Hammerman PS, Fox CJ, Cinalli RM, Xu A, Wagner JD, Lindsten T et al. Lymphocyte transformation by Pim-2 is dependent on nuclear factor-kappaB activation. Cancer Res 2004; 64: 8341–8348.

    Article  CAS  Google Scholar 

  57. Ren K, Zhang W, Shi Y, Gong J . Pim-2 activates API-5 to inhibit the apoptosis of hepatocellular carcinoma cells through NF-kappaB pathway. Pathol Oncol Res 2010; 16: 229–237.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JRN, KB, JC, TH and CB performed the experiments and derived the data shown. JRN wrote the paper. JC, CB, GF and KPL supervised the work performed, and reviewed and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K P Lee.

Ethics declarations

Competing interests

CB and JC are scientific co-founders and the president and vice president respectively of Jasco Pharmaceuticals. The other authors declare no conflicts of interest. This work was funded by Jasco Pharmaceuticals, R01 CA121044 and R01 AI100157.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, J., Caserta, J., Belko, K. et al. Novel inhibition of PIM2 kinase has significant anti-tumor efficacy in multiple myeloma. Leukemia 31, 1715–1726 (2017). https://doi.org/10.1038/leu.2016.379

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.379

This article is cited by

Search

Quick links