Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epidemiology

The cohesin subunit Rad21 is a negative regulator of hematopoietic self-renewal through epigenetic repression of Hoxa7 and Hoxa9

Abstract

Acute myelogenous leukemia (AML) is a high-risk hematopoietic malignancy caused by a variety of mutations, including genes encoding the cohesin complex. Recent studies have demonstrated that reduction in cohesin complex levels leads to enhanced self-renewal in hematopoietic stem and progenitors (HSPCs). We sought to delineate the molecular mechanisms by which cohesin mutations promote enhanced HSPC self-renewal as this represents a critical initial step during leukemic transformation. We verified that RNAi against the cohesin subunit Rad21 causes enhanced self-renewal of HSPCs in vitro through derepression of polycomb repressive complex 2 (PRC2) target genes, including Hoxa7 and Hoxa9. Importantly, knockdown of either Hoxa7 or Hoxa9 suppressed self-renewal, implying that both are critical downstream effectors of reduced cohesin levels. We further demonstrate that the cohesin and PRC2 complexes interact and are bound in close proximity to Hoxa7 and Hoxa9. Rad21 depletion resulted in decreased levels of H3K27me3 at the Hoxa7 and Hoxa9 promoters, consistent with Rad21 being critical to proper gene silencing by recruiting the PRC2 complex. Our data demonstrates that the cohesin complex regulates PRC2 targeting to silence Hoxa7 and Hoxa9 and negatively regulate self-renewal. Our studies identify a novel epigenetic mechanism underlying leukemogenesis in AML patients with cohesin mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Burnett A, Wetzler M, Lowenberg B . Therapeutic advances in acute myeloid leukemia. J Clin Oncol 2011; 29: 487–494.

    Article  Google Scholar 

  2. Thakar MS, Talano J-AM, Tower RL, Kelly ME, Burke MJ . Indications for transplantation in childhood acute leukemia and the impact of minimal residual disease on relapse: a review. Clin Pract 2014; 11: 79–90.

    Article  CAS  Google Scholar 

  3. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Google Scholar 

  4. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    Article  CAS  Google Scholar 

  5. Kon A, Shih L-Y, Minamino M, Sanada M, Shiraishi Y, Nagata Y et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet 2013; 45: 1232–1237.

    Article  CAS  Google Scholar 

  6. Thota S, Viny AD, Makishima H, Spitzer B, Radivoyevitch T, Przychodzen B et al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood 2014; 124: 1790–1798.

    Article  CAS  Google Scholar 

  7. Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 2014; 123: 914–920.

    Article  CAS  Google Scholar 

  8. Garg M, Nagata Y, Kanojia D, Mayakonda A, Yoshida K, Haridas Keloth S et al. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood 2015; 126: 2491–2501.

    Article  CAS  Google Scholar 

  9. Xu H, Balakrishnan K, Malaterre J, Beasley M, Yan Y, Essers J et al. Rad21-cohesin haploinsufficiency impedes DNA repair and enhances gastrointestinal radiosensitivity in mice. PLoS One 2010; 5: e12112.

    Article  Google Scholar 

  10. Remeseiro S, Cuadrado A, Gómez-López G, Pisano DG, Losada A . A unique role of cohesin-SA1 in gene regulation and development. EMBO J 2012; 31: 2090–2102.

    Article  CAS  Google Scholar 

  11. Kawauchi S, Calof AL, Santos R, Lopez-Burks ME, Young CM, Hoang MP et al. Multiple organ system defects and transcriptional dysregulation in the Nipbl+/− mouse, a model of Cornelia de Lange syndrome. PLoS Genet 2009; 5: e1000650.

    Article  Google Scholar 

  12. White JK, Gerdin A-K, Karp NA, Ryder E, Buljan M, Bussell JN et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 2013; 154: 452–464.

    Article  CAS  Google Scholar 

  13. Leeke B, Marsman J, O’Sullivan JM, Horsfield JA . Cohesin mutations in myeloid malignancies: underlying mechanisms. Exp Hematol Oncol 2014; 3: 13.

    Article  Google Scholar 

  14. Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet 2013; 45: 1293–1299.

    Article  CAS  Google Scholar 

  15. Mehta GD, Kumar R, Srivastava S, Ghosh SK . Cohesin: functions beyond sister chromatid cohesion. FEBS Lett 2013; 587: 2299–2312.

    Article  CAS  Google Scholar 

  16. Williams MS, Somervaille TCP . Leukemogenic activity of cohesin rings true. Cell Stem Cell 2015; 17: 642–644.

    Article  CAS  Google Scholar 

  17. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 2008; 451: 796–801.

    Article  CAS  Google Scholar 

  18. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010; 467: 430–435.

    Article  CAS  Google Scholar 

  19. Merkenschlager M, Odom DT . CTCF and cohesin: linking gene regulatory elements with their targets. Cell 2013; 152: 1285–1297.

    Article  CAS  Google Scholar 

  20. Baranello L, Kouzine F, Levens D . CTCF and cohesin cooperate to organize the 3D structure of the mammalian genome. Proc Natl Acad Sci USA 2014; 111: 889–890.

    Article  CAS  Google Scholar 

  21. Xu M, Zhao G-N, Lv X, Liu G, Wang LY, Hao D-L et al. CTCF controls HOXA cluster silencing and mediates PRC2-repressive higher-order chromatin structure in NT2/D1 cells. Mol Cell Biol 2014; 34: 3867–3879.

    Article  Google Scholar 

  22. Li T, Hu J-F, Qiu X, Ling J, Chen H, Wang S et al. CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol 2008; 28: 6473–6482.

    Article  CAS  Google Scholar 

  23. Mazumdar C, Shen Y, Xavy S, Zhao F, Reinisch A, Li R et al. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell 2015; 17: 675–688.

    Article  CAS  Google Scholar 

  24. Viny AD, Ott CJ, Spitzer B, Rivas M, Meydan C, Papalexi E et al. Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J Exp Med 2015; 212: 1819–1832.

    Article  CAS  Google Scholar 

  25. Mullenders J, Aranda-Orgilles B, Lhoumaud P, Keller M, Pae J, Wang K et al. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. J Exp Med 2015; 212: 1833–1850.

    Article  CAS  Google Scholar 

  26. Galeev R, Baudet A, Kumar P, Rundberg Nilsson A, Nilsson B, Soneji S et al. Genome-wide RNAi screen identifies cohesin genes as modifiers of renewal and differentiation in human HSCs. Cell Rep 2016; 14: 2988–3000.

    Article  CAS  Google Scholar 

  27. Castronovo P, Gervasini C, Cereda A, Masciadri M, Milani D, Russo S et al. Premature chromatid separation is not a useful diagnostic marker for Cornelia de Lange syndrome. Chromosome Res 2009; 17: 763–771.

    Article  CAS  Google Scholar 

  28. Liu J, Krantz ID . Cornelia de Lange syndrome, cohesin, and beyond. Clin Genet 2009; 76: 303–314.

    Article  CAS  Google Scholar 

  29. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  CAS  Google Scholar 

  30. Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, O'Laughlin M et al. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia 2015; 29: 1279–1289.

    Article  CAS  Google Scholar 

  31. Li Z, Zhang Z, Li Y, Arnovitz S, Chen P, Huang H et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 2013; 121: 1422–1431.

    Article  CAS  Google Scholar 

  32. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    Article  CAS  Google Scholar 

  33. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002; 99: 121–129.

    Article  CAS  Google Scholar 

  34. Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 2010; 17: 609–621.

    Article  CAS  Google Scholar 

  35. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  36. Lawrence HJ, Rozenfeld S, Cruz C, Matsukuma K . Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 1999; 13: 1993–1999.

    Article  CAS  Google Scholar 

  37. Afonja O, Smith JE, Cheng DM, Goldenberg AS, Amorosi E, Shimamoto T et al. MEIS1 and HOXA7 genes in human acute myeloid leukemia. Leuk Res 2000; 24: 849–855.

    Article  CAS  Google Scholar 

  38. Thorsteinsdottir U, Kroon E, Jerome L, Blasi F, Sauvageau G . Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol 2001; 21: 224–234.

    Article  CAS  Google Scholar 

  39. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K . Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20: 1123–1136.

    Article  CAS  Google Scholar 

  40. Seitan VC, Hao B, Tachibana-Konwalski K, Lavagnolli T, Mira-Bontenbal H, Brown KE et al. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 2011; 476: 467–471.

    Article  CAS  Google Scholar 

  41. Seitan VC, Faure AJ, Zhan Y, McCord RP, Lajoie BR, Ing-Simmons E et al. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res 2013; 23: 2066–2077.

    Article  CAS  Google Scholar 

  42. Ayton PM . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    Article  CAS  Google Scholar 

  43. Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G . NUP98–HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J 2001; 20: 350–361.

    Article  CAS  Google Scholar 

  44. Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009; 113: 2375–2385.

    Article  CAS  Google Scholar 

  45. Nagel S, Venturini L, Marquez VE, Meyer C, Kaufmann M, Scherr M et al. Polycomb repressor complex 2 regulates HOXA9 and HOXA10, activating ID2 in NK/T-cell lines. Mol Cancer 2010; 9: 151.

    Article  Google Scholar 

  46. Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994; 91: 12223–12227.

    Article  CAS  Google Scholar 

  47. Lawrence HJ . Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood 2005; 106: 3988–3994.

    Article  CAS  Google Scholar 

  48. Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2006; 107: 2170–2179.

    Article  CAS  Google Scholar 

  49. Cao Q, Wang X, Zhao M, Yang R, Malik R, Qiao Y et al. The central role of EED in the orchestration of polycomb group complexes. Nat Commun 2014; 5: 3127.

    Article  Google Scholar 

  50. Di Croce L, Helin K . Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 2013; 20: 1147–1155.

    Article  CAS  Google Scholar 

  51. Simon JA, Kingston RE . Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 2013; 49: 808–824.

    Article  CAS  Google Scholar 

  52. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012; 485: 376–380.

    Article  CAS  Google Scholar 

  53. Sanyal A, Lajoie BR, Jain G, Dekker J . The long-range interaction landscape of gene promoters. Nature 2013; 489: 109–113.

    Article  Google Scholar 

  54. Ong C-T, Corces VG . CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014; 15: 234–246.

    Article  CAS  Google Scholar 

  55. Phillips JE, Corces VG . CTCF: master weaver of the genome. Cell 2009; 137: 1194–1211.

    Article  Google Scholar 

  56. Berlivet S, Paquette D, Dumouchel A, Langlais D, Dostie J, Kmita M . Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs. PLoS Genet 2013; 9: e1004018.

    Article  Google Scholar 

  57. Vieux-Rochas M, Fabre PJ, Leleu M, Duboule D, Noordermeer D . Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc Natl Acad Sci 2015; 112: 4672–4677.

    Article  CAS  Google Scholar 

  58. Noordermeer D, Leleu M, Schorderet P, Joye E, Chabaud F, Duboule D . Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. Elife 2014; 3: e02557.

    Article  Google Scholar 

  59. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011; 20: 66–78.

    Article  CAS  Google Scholar 

  60. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    Article  CAS  Google Scholar 

  61. Chen S, Yang Z, Wilkinson AW, Deshpande AJ, Sidoli S, Krajewski K et al. The PZP domain of AF10 senses unmodified H3K27 to regulate DOT1L-mediated methylation of H3K79. Mol Cell 2015; 60: 319–327.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hope Campbell and Benedetta Bonacci for their assistance with flow cytometry. S Rao is supported by grants from the Midwest Athletes Against Childhood Cancer (MACC Fund), Hyundai Hope on Wheels and an American Society of Hematology Bridge Grant. Additional research support to S Rao was provided by charitable gifts from Hartland Blood Centers, Ms Nanette Gardetto and Mr Doug Ziegler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Rao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, J., Peterson, J., Reimer, M. et al. The cohesin subunit Rad21 is a negative regulator of hematopoietic self-renewal through epigenetic repression of Hoxa7 and Hoxa9. Leukemia 31, 712–719 (2017). https://doi.org/10.1038/leu.2016.240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.240

This article is cited by

Search

Quick links