Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic myleproliferative neoplasms

Protein kinase Cɛ inhibition restores megakaryocytic differentiation of hematopoietic progenitors from primary myelofibrosis patients

Abstract

Among the three classic Philadelphia chromosome-negative myeloproliferative neoplasms, primary myelofibrosis (PMF) is the most severe in terms of disease biology, survival and quality of life. Abnormalities in the process of differentiation of PMF megakaryocytes (MKs) are a hallmark of the disease. Nevertheless, the molecular events that lead to aberrant megakaryocytopoiesis have yet to be clarified. Protein kinase Cɛ (PKCɛ) is a novel serine/threonine kinase that is overexpressed in a variety of cancers, promoting aggressive phenotype, invasiveness and drug resistance. Our previous findings on the role of PKCɛ in normal (erythroid and megakaryocytic commitment) and malignant (acute myeloid leukemia) hematopoiesis prompted us to investigate whether it could be involved in the pathogenesis of PMF MK-impaired differentiation. We demonstrate that PMF megakaryocytic cultures express higher levels of PKCɛ than healthy donors, which correlate with higher disease burden but not with JAK2V617F mutation. Inhibition of PKCɛ function (by a negative regulator of PKCɛ translocation) or translation (by target small hairpin RNA) leads to reduction in PMF cell growth, restoration of PMF MK differentiation and inhibition of PKCɛ-related anti-apoptotic signaling (Bcl-xL). Our data suggest that targeting PKCɛ directly affects the PMF neoplastic clone and represent a proof-of-concept for PKCɛ inhibition as a novel therapeutic strategy in PMF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Levine RL, Gilliland DG . Myeloproliferative disorders. Blood 2008; 112: 2190–2198.

    Article  CAS  Google Scholar 

  2. Vannucchi AM . Management of myelofibrosis. Hematology Am Soc Hematol Educ Program 2011; 2011: 222–230.

    Article  Google Scholar 

  3. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  Google Scholar 

  4. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  Google Scholar 

  5. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  Google Scholar 

  6. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    Article  CAS  Google Scholar 

  7. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  Google Scholar 

  8. Chaligne R, James C, Tonetti C, Besancenot R, Le Couedic JP, Fava F et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood 2007; 110: 3735–3743.

    Article  CAS  Google Scholar 

  9. Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008; 112: 141–149.

    Article  CAS  Google Scholar 

  10. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  Google Scholar 

  11. Green A, Beer P . Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 2010; 362: 369–370.

    Article  CAS  Google Scholar 

  12. Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adelaide J, Rey J et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 2009; 23: 2183–2186.

    Article  CAS  Google Scholar 

  13. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  Google Scholar 

  14. Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A . DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia 2011; 25: 1219–1220.

    Article  CAS  Google Scholar 

  15. Jager R, Gisslinger H, Passamonti F, Rumi E, Berg T, Gisslinger B et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 2010; 24: 1290–1298.

    Article  CAS  Google Scholar 

  16. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 2009; 113: 6182–6192.

    Article  CAS  Google Scholar 

  17. Koren-Michowitz M, Gery S, Tabayashi T, Lin D, Alvarez R, Nagler A et al. SH2B3 (LNK) mutations from myeloproliferative neoplasms patients have mild loss of function against wild type JAK2 and JAK2 V617F. Br J Haematol 2013; 161: 811–820.

    Article  CAS  Google Scholar 

  18. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–2405.

    Article  CAS  Google Scholar 

  19. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.

    Article  CAS  Google Scholar 

  20. Tefferi A . Mutations galore in myeloproliferative neoplasms: would the real Spartacus please stand up? Leukemia 2011; 25: 1059–1063.

    Article  CAS  Google Scholar 

  21. Cross NC . Genetic and epigenetic complexity in myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program 2011; 2011: 208–214.

    Article  Google Scholar 

  22. Wen Q, Goldenson B, Crispino JD . Normal and malignant megakaryopoiesis. Expert Rev Mol Med 2011; 13: e32.

    Article  Google Scholar 

  23. Thiele J . Philadelphia chromosome-negative chronic myeloproliferative disease. Am J Clin Pathol 2009; 132: 261–280.

    Article  Google Scholar 

  24. Papadantonakis N, Matsuura S, Ravid K . Megakaryocyte pathology and bone marrow fibrosis: the lysyl oxidase connection. Blood 2012; 120: 1774–1781.

    Article  CAS  Google Scholar 

  25. Ciurea SO, Merchant D, Mahmud N, Ishii T, Zhao Y, Hu W et al. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood 2007; 110: 986–993.

    Article  CAS  Google Scholar 

  26. Balduini A, Badalucco S, Pugliano MT, Baev D, De Silvestri A, Cattaneo M et al. In vitro megakaryocyte differentiation and proplatelet formation in Ph-negative classical myeloproliferative neoplasms: distinct patterns in the different clinical phenotypes. PLoS One 2011; 6: e21015.

    Article  CAS  Google Scholar 

  27. Akita Y . Protein kinase C-epsilon (PKC-epsilon): its unique structure and function. J Biochem 2002; 132: 847–852.

    Article  CAS  Google Scholar 

  28. Cenni V, Doppler H, Sonnenburg ED, Maraldi N, Newton AC, Toker A . Regulation of novel protein kinase C epsilon by phosphorylation. Biochem J 2002; 363: 537–545.

    Article  CAS  Google Scholar 

  29. Kraft AS, Anderson WB . Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature 1983; 301: 621–623.

    Article  CAS  Google Scholar 

  30. Disatnik MH, Buraggi G, Mochly-Rosen D . Localization of protein kinase C isozymes in cardiac myocytes. Exp Cell Res 1994; 210: 287–297.

    Article  CAS  Google Scholar 

  31. Mochly-Rosen D . Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 1995; 268: 247–251.

    Article  CAS  Google Scholar 

  32. Csukai M, Chen CH, De Matteis MA, Mochly-Rosen D . The coatomer protein beta'-COP, a selective binding protein (RACK) for protein kinase Cepsilon. J Biol Chem 1997; 272: 29200–29206.

    Article  CAS  Google Scholar 

  33. Griner EM, Kazanietz MG . Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 2007; 7: 281–294.

    Article  CAS  Google Scholar 

  34. Gorin MA, Pan Q . Protein kinase C epsilon: an oncogene and emerging tumor biomarker. Mol Cancer 2009; 8: 9.

    Article  Google Scholar 

  35. Gobbi G, Di Marcantonio D, Micheloni C, Carubbi C, Galli D, Vaccarezza M et al. TRAIL up-regulation must be accompanied by a reciprocal PKCepsilon down-regulation during differentiation of colonic epithelial cell: implications for colorectal cancer cell differentiation. J Cell Physiol 2012; 227: 630–638.

    Article  CAS  Google Scholar 

  36. Ali S, Al-Sukhun S, El-Rayes BF, Sarkar FH, Heilbrun LK, Philip PA . Protein kinases C isozymes are differentially expressed in human breast carcinomas. Life Sci 2009; 84: 766–771.

    Article  CAS  Google Scholar 

  37. Song MS, Park YK, Lee JH, Park K . Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade. Cancer Res 2001; 61: 8322–8330.

    CAS  PubMed  Google Scholar 

  38. Wu D, Foreman TL, Gregory CW, McJilton MA, Wescott GG, Ford OH et al. Protein kinase cepsilon has the potential to advance the recurrence of human prostate cancer. Cancer Res 2002; 62: 2423–2429.

    CAS  PubMed  Google Scholar 

  39. Basu A . PKCepsilon paves the way for prostate cancer. Cell Cycle 2011; 10: 378.

    Article  CAS  Google Scholar 

  40. Knauf JA, Ward LS, Nikiforov YE, Nikiforova M, Puxeddu E, Medvedovic M et al. Isozyme-specific abnormalities of PKC in thyroid cancer: evidence for post-transcriptional changes in PKC epsilon. J Clin Endocrinol Metab 2002; 87: 2150–2159.

    Article  CAS  Google Scholar 

  41. Bae KM, Wang H, Jiang G, Chen MG, Lu L, Xiao L . Protein kinase C epsilon is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Res 2007; 67: 6053–6063.

    Article  CAS  Google Scholar 

  42. Sharif TR, Sharif M . Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol 1999; 15: 237–243.

    CAS  PubMed  Google Scholar 

  43. Slupsky JR, Kamiguti AS, Harris RJ, Cawley JC, Zuzel M . Central role of protein kinase Cepsilon in constitutive activation of ERK1/2 and Rac1 in the malignant cells of hairy cell leukemia. Am J Pathol 2007; 170: 745–754.

    Article  CAS  Google Scholar 

  44. Gobbi G, Mirandola P, Carubbi C, Micheloni C, Malinverno C, Lunghi P et al. Phorbol ester-induced PKCepsilon down-modulation sensitizes AML cells to TRAIL-induced apoptosis and cell differentiation. Blood 2009; 113: 3080–3087.

    Article  CAS  Google Scholar 

  45. Gobbi G, Mirandola P, Carubbi C, Galli D, Vitale M . Protein kinase C epsilon in hematopoiesis: conductor or selector? Semin Thromb Hemost 2013; 39: 59–65.

    Article  CAS  Google Scholar 

  46. Gobbi G, Mirandola P, Sponzilli I, Micheloni C, Malinverno C, Cocco L et al. Timing and expression level of protein kinase C epsilon regulate the megakaryocytic differentiation of human CD34 cells. Stem Cells 2007; 25: 2322–2329.

    Article  CAS  Google Scholar 

  47. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et alThe 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  Google Scholar 

  48. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009; 113: 2895–2901.

    Article  CAS  Google Scholar 

  49. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115: 1703–1708.

    Article  CAS  Google Scholar 

  50. Gobbi G, Mirandola P, Carubbi C, Masselli E, Sykes SM, Ferraro F et al. Proplatelet generation in the mouse requires PKCepsilon-dependent RhoA inhibition. Blood 2013; 122: 1305–1311.

    Article  CAS  Google Scholar 

  51. Qvit N, Mochly-Rosen D . Highly specific modulators of protein kinase C localization: applications to heart failure. Drug Discov Today Dis Mech 2010; Summer 7: e87–e93.

    Article  CAS  Google Scholar 

  52. Souroujon MC, Mochly-Rosen D . Peptide modulators of protein-protein interactions in intracellular signaling. Nat Biotechnol 1998; 16: 919–924.

    Article  CAS  Google Scholar 

  53. Brandman R, Disatnik MH, Churchill E, Mochly-Rosen D . Peptides derived from the C2 domain of protein kinase C epsilon (epsilon PKC) modulate epsilon PKC activity and identify potential protein-protein interaction surfaces. J Biol Chem 2007; 282: 4113–4123.

    Article  CAS  Google Scholar 

  54. Hasselbalch HC . Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res 2013; 37: 214–220.

    Article  CAS  Google Scholar 

  55. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A . Circulating interleukin (IL)-8, IL-2 R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol 2011; 29: 1356–1363.

    Article  CAS  Google Scholar 

  56. Aksoy E, Goldman M, Willems F . Protein kinase C epsilon: a new target to control inflammation and immune-mediated disorders. Int J Biochem Cell Biol 2004; 36: 183–188.

    Article  CAS  Google Scholar 

  57. Rendon-Huerta E, Mendoza-Hernandez G, Robles-Flores M . Characterization of calreticulin as a protein interacting with protein kinase C. Biochem J 1999; 344: 469–475.

    Article  CAS  Google Scholar 

  58. Cristina Castaneda-Patlan M, Razo-Paredes R, Carrisoza-Gaytan R, Gonzalez-Mariscal L, Robles-Flores M . Protein kinase C is involved in the regulation of several calreticulin posttranslational modifications. Int J Biochem Cell Biol 2010; 42: 120–131.

    Article  CAS  Google Scholar 

  59. Cousins MJ, Pickthorn K, Huang S, Critchley L, Bell G . The safety and efficacy of KAI-1678- an inhibitor of epsilon protein kinase C (epsilonPKC)-versus lidocaine and placebo for the treatment of postherpetic neuralgia: a crossover study design. Pain Med 2013; 14: 533–540.

    Article  Google Scholar 

  60. Moodie JE, Bisley EJ, Huang S, Pickthorn K, Bell G . A single-center, randomized, double-blind, active, and placebo-controlled study of KAI-1678, a novel PKC-epsilon inhibitor, in the treatment of acute postoperative orthopedic pain. Pain Med 2013; 14: 916–924.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Programma di ricerca-Area1 Regione Emilia-Romagna-Università (ER-Università) 2010–2012 to GG and Finanziamento italiano per la Ricerca di Base (FIRB)-accordo di programma 2010 (RBAP10KCNS_002) to MV. EM was supported by AIL (Italian Association against Leukemia). We are grateful to Professor F Quaini, University of Parma, for providing cells from PMF3, and to Professor AM Vannucchi, University of Florence, for providing cells from PMF1 and 5.

Author contributions

EM, GG, PM, FA and MV designed the research, analyzed data and wrote the manuscript. EM, CC, SM, DG and SB performed experiments. MC, LC and FA provided patients’ samples and data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Vitale.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masselli, E., Carubbi, C., Gobbi, G. et al. Protein kinase Cɛ inhibition restores megakaryocytic differentiation of hematopoietic progenitors from primary myelofibrosis patients. Leukemia 29, 2192–2201 (2015). https://doi.org/10.1038/leu.2015.150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.150

This article is cited by

Search

Quick links