Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute Leukemias

Clonal origins of ETV6-RUNX1+ acute lymphoblastic leukemia: studies in monozygotic twins

Abstract

Studies on twins with concordant acute lymphoblastic leukemia (ALL) have revealed that ETV6-RUNX1 gene fusion is a common, prenatal genetic event with other driver aberrations occurring subclonally and probably postnatally. The fetal cell type that is transformed by ETV6-RUNX1 is not identified by such studies or by the analysis of early B-cell lineage phenotype of derived progeny. Ongoing, clonal immunoglobulin (IG) and cross-lineage T-cell receptor (TCR) gene rearrangements are features of B-cell precursor leukemia and commence at the pro-B-cell stage of normal B-cell lineage development. We reasoned that shared clonal rearrangements of IG or TCR genes by concordant ALL in twins would be informative about the fetal cell type in which clonal advantage is elicited by ETV6-RUNX1. Five pairs of twins were analyzed for all varieties of IG and TCR gene rearrangements. All pairs showed identical incomplete or complete variable-diversity-joining junctions coupled with substantial, subclonal and divergent rearrangements. This pattern was endorsed by single-cell genetic scrutiny in one twin pair. Our data suggest that the pre-leukemic initiating function of ETV6-RUNX1 fusion is associated with clonal expansion early in the fetal B-cell lineage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Inaba H, Greaves M, Mullighan CG . Acute lymphoblastic leukaemia. Lancet 2013; 381: 1943–1955.

    Article  Google Scholar 

  2. Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M . Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998; 95: 4584–4588.

    Article  CAS  Google Scholar 

  3. Greaves MF, Maia AT, Wiemels JL, Ford AM . Leukemia in twins: lessons in natural history. Blood 2003; 102: 2321–2333.

    Article  CAS  Google Scholar 

  4. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999; 354: 1499–1503.

    Article  CAS  Google Scholar 

  5. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    Article  CAS  Google Scholar 

  6. Potter NE, Ermini L, Papaemmanuil E, Cazzaniga G, Vijayaraghavan G, Titley I et al. Single-cell mutational profiling and clonal phylogeny in cancer. Genome Res 2013; 23: 2115–2125.

    Article  CAS  Google Scholar 

  7. Bateman CM, Colman SM, Chaplin T, Young BD, Eden TO, Bhakta M et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 2010; 115: 3553–3558.

    Article  CAS  Google Scholar 

  8. Ma Y, Dobbins SE, Sherborne AL, Chubb D, Galbiati M, Cazzaniga G et al. Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2013; 110: 7429–7433.

    Article  CAS  Google Scholar 

  9. van Delft FW, Horsley S, Colman S, Anderson K, Bateman C, Kempski H et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood 2011; 117: 6247–6254.

    Article  CAS  Google Scholar 

  10. Tsuzuki S, Seto M, Greaves M, Enver T . Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci USA 2004; 101: 8443–8448.

    Article  CAS  Google Scholar 

  11. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008; 319: 336–339.

    Article  CAS  Google Scholar 

  12. Schindler JW, Van Buren D, Foudi A, Krejci O, Qin J, Orkin SH et al. TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell 2009; 5: 43–53.

    Article  CAS  Google Scholar 

  13. van der Weyden L, Giotopoulos G, Rust AG, Matheson LS, van Delft FW, Kong J et al. Modeling the evolution of ETV6-RUNX1-induced B-cell precursor acute lymphoblastic leukemia in mice. Blood 2011; 118: 1041–1051.

    Article  CAS  Google Scholar 

  14. Li M, Jones L, Gaillard C, Binnewies M, Ochoa R, Garcia E et al. Initially disadvantaged, TEL-AML1 cells expand and initiate leukemia in response to irradiation and cooperating mutations. Leukemia 2013; 27: 1570–1573.

    Article  CAS  Google Scholar 

  15. Hotfilder M, Röttgers S, Rosemann A, Schrauder A, Schrappe M, Pieters R et al. Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells. Cancer Res 2005; 65: 1442–1449.

    Article  CAS  Google Scholar 

  16. Hoffmann R, Melchers F . A genomic view of lymphocyte development. Curr Opin Immunol 2003; 15: 239–245.

    Article  CAS  Google Scholar 

  17. van Zelm MC, van der Burg M, de Ridder D, Barendregt BH, de Haas EF, Reinders MJ et al. Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol 2005; 175: 5912–5922.

    Article  CAS  Google Scholar 

  18. van der Velden VH, Szczepański T, Wijkhuijs AJM, Hart PG, Hoogeveen PG, Hop WC et al. Age-related patterns of immunoglobulin and T cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 2003; 17: 1834–1844.

    Article  CAS  Google Scholar 

  19. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grümayer R, van der Velden V, Fischer S et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008; 22: 771–782.

    Article  CAS  Google Scholar 

  20. Hübner S, Cazzaniga G, Flohr T, van der Velden VH, Konrad M, Pötschger U et al. High incidence and unique features of antigen receptor gene rearrangements in TEL-AML1-positive leukemias. Leukemia 2004; 18: 84–91.

    Article  Google Scholar 

  21. Gawad C, Pepin F, Carlton VE, Klinger M, Logan AC, Miklos DB et al. Massive evolution of the immunoglobulin heavy chain locus in children with B precursor acute lymphoblastic leukemia. Blood 2012; 120: 4407–4417.

    Article  CAS  Google Scholar 

  22. Teuffel O, Betts DR, Dettling M, Schaub R, Schäfer BW, Niggli FK . Prenatal origin of separate evolution of leukemia in identical twins. Leukemia 2004; 18: 1624–1629.

    Article  CAS  Google Scholar 

  23. Bungaro S, Irving J, Tussiwand R, Mura R, Minto L, Molteni C et al. Genomic analysis of different clonal evolution in a twin pair with t(12;21) positive acute lymphoblastic leukemia sharing the same prenatal clone. Leukemia 2008; 22: 208–211.

    Article  CAS  Google Scholar 

  24. Bateman CM, Alpar D, Ford AM, Colman SM, Wren D, Morgan M et al. Evolutionary trajectories of hyperdiploid ALL in monozygotic twins. Leukemia 2014; e-pub ahead of print 4 June 2014; doi:10.1038/leu.2014.177.

    Article  Google Scholar 

  25. van Dongen JJ, Langerak AW, Brüggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  Google Scholar 

  26. Szczepański T, Van der Velden VH, Hoogeveen P, de Bie M, Jacobs DC, van Wering ER et al. Vδ2-Jα rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood 2004; 103: 3798–3804.

    Article  Google Scholar 

  27. Langerak AW, Groenen PJ, Brüggemann M, Beldjord K, Bellan C, Bonello L et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 2012; 26: 2159–2171.

    Article  CAS  Google Scholar 

  28. Kozarewa I, Rosa-Rosa JM, Wardell CP, Walker BA, Fenwick K, Assiotis I et al. A modified method for whole exome resequencing from minimal amounts of starting DNA. PLoS One 2012; 7: e32617.

    Article  CAS  Google Scholar 

  29. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007; 21: 604–611.

    Article  CAS  Google Scholar 

  30. Page RMD, Holmes EC . Molecular evolution: a phylogenetic approach, 1st edn. Wiley-Blackwell: UK, 1998.

    Google Scholar 

  31. Langerak AW, Nadel B, De Torbal A, Wolvers-Tettero IL, van Gastel-Mol EJ, Verhaaf B et al. Unraveling the consecutive recombination events in the human IGK locus. J Immunol 2004; 173: 3878–3888.

    Article  CAS  Google Scholar 

  32. Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffé M, Jonveaux P et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 1995; 86: 4263–4269.

    CAS  Google Scholar 

  33. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 2003; 3: 639–649.

    Article  CAS  Google Scholar 

  34. Wiemels JL, Greaves M . Structure and possible mechanisms of TEL-AML1 gene fusions in childhood acute lymphoblastic leukemia. Cancer Res 1999; 59: 4075–4082.

    CAS  PubMed  Google Scholar 

  35. Tsai AG, Lu H, Raghavan SC, Muschen M, Hsieh CL, Lieber MR et al. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 2008; 135: 1130–1142.

    Article  CAS  Google Scholar 

  36. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet 2014; 46: 116–125.

    Article  CAS  Google Scholar 

  37. Fischer M, Schwieger M, Horn S, Niebuhr B, Ford A, Roscher S et al. Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model. Oncogene 2005; 24: 7579–7591.

    Article  CAS  Google Scholar 

  38. Ridge SA, Cabrera ME, Ford AM, Tapia S, Risueño C, Labra S et al. Rapid intraclonal switch of lineage dominance in congenital leukaemia with a MLL gene rearrangement. Leukemia 1995; 9: 2023–2026.

    CAS  PubMed  Google Scholar 

  39. Janossy G, Woodruff RK, Pippard MJ, Prentice G, Hoffbrand AV, Paxton A et al. Relation of ‘lymphoid’ phenotype and response to chemotherapy incorporating vincristine-prednisolone in the acute phase of Ph1 positive leukaemia. Cancer 1979; 43: 426–434.

    Article  CAS  Google Scholar 

  40. Szczepański T, Beishuizen A, Pongers-Willemse MJ, Hählen K, Van Wering ER, Wijkhuijs AJ et al. Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia 1999; 13: 196–205.

    Article  Google Scholar 

  41. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 2002; 99: 8242–8247.

    Article  CAS  Google Scholar 

  42. Castor A, Nilsson L, Astrand-Grundström I, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    Article  CAS  Google Scholar 

  43. Hotfilder M, Röttgers S, Rosemann A, Jürgens H, Harbott J, Vormoor J . Immature CD34+CD19- progenitor/stem cells in TEL/AML1-positive acute lymphoblastic leukemia are genetically and functionally normal. Blood 2002; 100: 640–646.

    Article  CAS  Google Scholar 

  44. Li Z, Godinho FJ, Klusmann JH, Garriga-Canut M, Yu C, Orkin SH . Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet 2005; 37: 613–619.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank patients and families involved in this study, Prof Tim O Eden (Academic Unit of Paediatric Oncology, University of Manchester), Dr Manoo Bhakta (University of Tennessee at Chattanooga and TC Thompson Children’s Hospital), Dr Eric J Gratias (University of Tennessee at Chattanooga and TC Thompson Children’s Hospital), Prof Elisabeth R van Wering (Dutch Childhood Oncology Group), Dr Richard Hain (Children’s Hospital for Wales), Dr Giovanni Cazzaniga (Clinica Pediatrica University di Milano Bicocca, Monza) and the Leukemia & Lymphoma Research Cellbank for providing patient samples. This research on childhood leukemic samples was conducted under ethical approval (CCR 2285 Royal Marsden Hospital NHS Foundation Trust). We are also grateful to Professor Marie-Paule Lefranc for her guidance regarding the proper IMGT nomenclature, to Daphne Webster for her excellent technical assistance and to Christopher P Wardell for providing bioinformatic support. DA is supported as an ISAC scholar by the International Society for Advancement of Cytometry. DA and The Institute of Cancer Research, and LE and the University of Copenhagen acknowledge the support of the European Commission under the Marie Curie Intra-European Fellowship Programme. The contents of this paper reflect only the authors’ views and not the views of the European Commission. We also acknowledge the use of services provided by The Institute of Cancer Research Genetics Core Facility, which is managed by Dr Sandra Hanks. This work was supported by Leukaemia & Lymphoma Research United Kingdom, the Kay Kendall Leukaemia Fund United Kingdom and the Gabrielle’s Angel Foundation for Cancer Research and The Wellcome Trust (grant number 105104/Z/14/Z).

Author Contributions

DA and MG designed the study. DA, DW, LE, MBM, FWvD, CMB, IT, LK, TS, DG, AMF, NEP and MG generated and/or analyzed the experimental data. DA and MG wrote the paper. AMF, NEP and MG supervised the study. All authors critically reviewed and approved the final draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Greaves.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpar, D., Wren, D., Ermini, L. et al. Clonal origins of ETV6-RUNX1+ acute lymphoblastic leukemia: studies in monozygotic twins. Leukemia 29, 839–846 (2015). https://doi.org/10.1038/leu.2014.322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.322

This article is cited by

Search

Quick links