Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia

Abstract

Clonal architecture in myeloproliferative neoplasms (MPNs) is poorly understood. Here we report genomic analyses of a patient with primary myelofibrosis (PMF) transformed to secondary acute myeloid leukemia (sAML). Whole genome sequencing (WGS) was performed on PMF and sAML diagnosis samples, with skin included as a germline surrogate. Deep sequencing validation was performed on the WGS samples and an additional sample obtained during sAML remission/relapsed PMF. Clustering analysis of 649 validated somatic single-nucleotide variants revealed four distinct clonal groups, each including putative driver mutations. The first group (including JAK2 and U2AF1), representing the founding clone, included mutations with high frequency at all three disease stages. The second clonal group (including MYB) was present only in PMF, suggesting the presence of a clone that was dispensable for transformation. The third group (including ASXL1) contained mutations with low frequency in PMF and high frequency in subsequent samples, indicating evolution of the dominant clone with disease progression. The fourth clonal group (including IDH1 and RUNX1) was acquired at sAML transformation and was predominantly absent at sAML remission/relapsed PMF. Taken together, these findings illustrate the complex clonal dynamics associated with disease evolution in MPNs and sAML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Levine RL, Gilliland DG . Myeloproliferative disorders. Blood 2008; 112: 2190–2198.

    Article  CAS  Google Scholar 

  2. Tefferi A, Vainchenker W . Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29: 573–582.

    Article  CAS  Google Scholar 

  3. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011; 29: 392–397.

    Article  Google Scholar 

  4. Heaney ML, Soriano G . Acute myeloid leukemia following a myeloproliferative neoplasm: clinical characteristics, genetic features and effects of therapy. Curr Hematol Malig Rep 2013; 8: 116–122.

    Article  Google Scholar 

  5. Mesa RA, Li CY, Ketterling RP, Schroeder GS, Knudson RA, Tefferi A . Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 2005; 105: 973–977.

    Article  CAS  Google Scholar 

  6. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  Google Scholar 

  7. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  Google Scholar 

  8. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  Google Scholar 

  9. Levine R, Wadleigh M, Cools J, Ebert B, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  Google Scholar 

  10. Pardanani A, Levine R, Lasho T, Pikman Y, Mesa R, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  Google Scholar 

  11. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert B, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    Article  Google Scholar 

  12. Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD Jr. et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 2010; 116: 988–992.

    Article  CAS  Google Scholar 

  13. Pardanani A, Lasho T, Finke C, Oh ST, Gotlib J, Tefferi A . LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia 2010; 24: 1713–1718.

    Article  CAS  Google Scholar 

  14. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799–807.

    Article  CAS  Google Scholar 

  15. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787–798.

    Article  CAS  Google Scholar 

  16. Tefferi A . Mutations galore in myeloproliferative neoplasms: would the real Spartacus please stand up? Leukemia 2011; 25: 1059–1063.

    Article  CAS  Google Scholar 

  17. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  Google Scholar 

  18. Wang L, Swierczek SI, Drummond J, Hickman K, Kim SJ, Walker K et al. Whole-exome sequencing of polycythemia vera revealed novel driver genes and somatic mutation shared by T cells and granulocytes. Leukemia 2014; 28: 935–938.

    Article  CAS  Google Scholar 

  19. Theocharides A, Boissinot M, Girodon F, Garand R, Teo S, Lippert E et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 2007; 110: 375–379.

    Article  CAS  Google Scholar 

  20. Abdel-Wahab O . Genetics of the myeloproliferative neoplasms. Curr Opin Hematol 2011; 18: 117–123.

    Article  Google Scholar 

  21. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.

    Article  CAS  Google Scholar 

  22. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–2405.

    Article  CAS  Google Scholar 

  23. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    Article  CAS  Google Scholar 

  24. Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  25. Wang L, Swierczek SI, Lanikova L, Kim SJ, Hickman K, Walker K et al. The relationship of JAK2(V617F) and acquired UPD at chromosome 9p in polycythemia vera. Leukemia 2014; 28: 938–941.

    Article  CAS  Google Scholar 

  26. Wang X, LeBlanc A, Gruenstein S, Xu M, Mascarenhas J, Panzera B et al. Clonal analyses define the relationships between chromosomal abnormalities and JAK2V617F in patients with Ph-negative myeloproliferative neoplasms. Exp Hematol 2009; 37: 1194–1200.

    Article  CAS  Google Scholar 

  27. Godfrey AL, Chen E, Pagano F, Silber Y, Campbell PJ, Green AR . Clonal analyses reveal associations of JAK2V617F homozygosity with hematologic features, age and gender in polycythemia vera and essential thrombocythemia. Haematologica 2013; 98: 718–721.

    Article  CAS  Google Scholar 

  28. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014; 123: 2220–2228.

    Article  CAS  Google Scholar 

  29. Merker JD, Roskin KM, Ng D, Pan C, Fisk DG, King JJ et al. Comprehensive whole-genome sequencing of an early-stage primary myelofibrosis patient defines low mutational burden and non-recurrent candidate genes. Haematologica 2013; 98: 1689–1696.

    Article  CAS  Google Scholar 

  30. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  Google Scholar 

  31. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001; 29: 308–311.

    Article  CAS  Google Scholar 

  32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  Google Scholar 

  33. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z . Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 2009; 25: 2865–2871.

    Article  CAS  Google Scholar 

  34. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  Google Scholar 

  35. Venkatraman ES, Olshen AB . A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 2007; 23: 657–663.

    Article  CAS  Google Scholar 

  36. Trapnell C, Pachter L, Salzberg SL . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105–1111.

    Article  CAS  Google Scholar 

  37. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28: 511–515.

    Article  CAS  Google Scholar 

  38. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B . Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008; 5: 621–628.

    Article  CAS  Google Scholar 

  39. Chen K, Wallis JW, Kandoth C, Kalicki-Veizer JM, Mungall KL, Mungall AJ et al. BreakFusion: targeted assembly-based identification of gene fusions in whole transcriptome paired-end sequencing data. Bioinformatics 2012; 28: 1923–1924.

    Article  CAS  Google Scholar 

  40. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 2012; 28: 311–317.

    Article  CAS  Google Scholar 

  41. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.

    Article  CAS  Google Scholar 

  42. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22: 568–576.

    Article  CAS  Google Scholar 

  43. Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012; 366: 1090–1098.

    Article  CAS  Google Scholar 

  44. Ester M, Kriegel HP, Sander J, Xu X . A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining; 2–4 August 1996; Portland, OR. AAAI Press: Menlo Park, CA, 1996, pp 226–231.

  45. Fraley C, Raftery A . Model-based clustering, discriminant analysis and density estimation. J Am Stat Assoc 2002; 97: 611–631.

    Article  Google Scholar 

  46. Levine RL, Belisle C, Wadleigh M, Zahrieh D, Lee S, Chagnon P et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 2006; 107: 4139–4141.

    Article  CAS  Google Scholar 

  47. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  Google Scholar 

  48. Oh ST, Gotlib J . JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol 2010; 3: 323–337.

    Article  CAS  Google Scholar 

  49. Zhang SJ, Rampal R, Manshouri T, Patel J, Mensah N, Kayserian A et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 2012; 119: 4480–4485.

    Article  CAS  Google Scholar 

  50. Steensma DP, Pardanani A, Stevenson WS, Hoyt R, Kiu H, Grigg AP et al. More on Myb in myelofibrosis: molecular analyses of MYB and EP300 in 55 patients with myeloproliferative disorders. Blood 2006; 107: 1733–1735, author reply 5.

    Article  CAS  Google Scholar 

  51. Ding Y, Harada Y, Imagawa J, Kimura A, Harada H . AML1/RUNX1 point mutation possibly promotes leukemic transformation in myeloproliferative neoplasms. Blood 2009; 114: 5201–5205.

    Article  CAS  Google Scholar 

  52. Dey A, Seshasayee D, Noubade R, French DM, Liu J, Chaurushiya MS et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 2012; 337: 1541–1546.

    Article  CAS  Google Scholar 

  53. Abdel-Wahab O, Dey A . The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia 2013; 27: 10–15.

    Article  CAS  Google Scholar 

  54. Ruan HB, Han X, Li MD, Singh JP, Qian K, Azarhoush S et al. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability. Cell Metab 2012; 16: 226–237.

    Article  CAS  Google Scholar 

  55. Godfrey AL, Chen E, Pagano F, Ortmann CA, Silber Y, Bellosillo B et al. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood 2012; 120: 2704–2707.

    Article  CAS  Google Scholar 

  56. Scott LM, Scott MA, Campbell PJ, Green AR . Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 2006; 108: 2435–2437.

    Article  CAS  Google Scholar 

  57. Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 2012; 148: 873–885.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH Grants K08HL106576 (to STO), K12HL087107 (to STO), P01CA101937 (TJL), and T32HL007088 (to EKE, DACF). This research was also supported by a Sidney Kimmel Scholar Award, Leukemia Research Foundation New Investigator Award, Central Society for Clinical Research Early Career Development Award, Barnes-Jewish Hospital Foundation/Washington University Institute of Clinical and Translational Sciences Pilot Grant, and American Cancer Society Institutional Research Grant (all to STO). This work was supported by the Washington University Institute of Clinical and Translational Sciences Grant UL1TR000448 from the National Center for Advancing Translational Sciences of NIH. Technical support was provided by the Alvin J. Siteman Cancer Center Tissue Procurement and Flow Cytometry Cores, which are supported by NCI Cancer Center Support Grant P30CA91842. We thank D Link and J Xia for assistance with cell sorting and colony assays, K Martin, C Kaiwar and M Fulbright for performing JAK2 and U2AF1 genotyping experiments and J McMichael for assistance with illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S T Oh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engle, E., Fisher, D., Miller, C. et al. Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia. Leukemia 29, 869–876 (2015). https://doi.org/10.1038/leu.2014.289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.289

This article is cited by

Search

Quick links