Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches

Abstract

When treatment fails, the clinical outcome of acute leukemia patients is usually very poor, particularly when failure occurs after transplantation. A second allogeneic stem cell transplant could be envisaged as an effective and feasible salvage option in younger patients having a late relapse and an available donor. Unmanipulated or minimally manipulated donor T cells may also be effective in a minority of patients but the main limit remains the induction of severe graft-versus-host disease. This clinical complication has brought about a huge research effort that led to the development of leukemia-specific T-cell therapy aiming at the direct recognition of leukemia-specific rather than minor histocompatibility antigens. Despite a great scientific interest, the clinical feasibility of such an approach has proven to be quite problematic. To overcome this limitation, more research has moved toward the choice of targeting commonly expressed hematopoietic specific antigens by the genetic modification of unselected T cells. The best example of this is represented by the anti-CD19 chimeric antigen receptor (CD19.CAR) T cells. As a possible alternative to the genetic manipulation of unselected T cells, specific T-cell subpopulations with in vivo favorable homing and long-term survival properties have been genetically modified by CAR molecules. Finally, the use of naturally cytotoxic effector cells such as natural killer and cytokine-induced killer cells has been proposed in several clinical trials. The clinical development of these latter cells could also be further expanded by additional genetic modifications using the CAR technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Savani BN, Mielke S, Reddy N, Goodman S, Jagasia M, Rezvani K . Management of relapse after allo-SCT for AML and the role of second transplantation. Bone Marrow Transplant 2009; 44: 769–777.

    CAS  PubMed  Google Scholar 

  2. van den Brink MR, Porter DL, Giralt S, Lu SX, Jenq RR, Hanash A et al. Relapse after allogeneic hematopoietic cell therapy. Biol Blood Marrow Transplant 2010; 16: S138–S145.

    PubMed  Google Scholar 

  3. Barrett AJ, Battiwalla M . Relapse after allogeneic stem cell transplantation. Expert Rev Hematol 2010; 3: 429–441.

    PubMed  PubMed Central  Google Scholar 

  4. Eapen M, Giralt SA, Horowitz MM, Klein JP, Wagner JE, Zhang M-J et al. Second transplant for acute and chronic leukemia relapsing after first HLA-identical sibling transplant. Bone Marrow Transplant 2004; 34: 721–727.

    CAS  PubMed  Google Scholar 

  5. Leung AY, Tse E, Hwang YY, Chan TS, Gill H, Chim CS et al. Primary treatment of leukemia relapses after allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning second transplantation from the original donor. Am J Hematol 2013; 88: 485–491.

    PubMed  Google Scholar 

  6. Christopeit M, Kuss O, Finke J, Bacher U, Beelen DW, Bornhauser M et al. Second allograft for hematologic relapse of acute leukemia after first allogeneic stem-cell transplantation from related and unrelated donors: the role of donor change. J Clin Oncol 2013; 31: 3259–3271.

    PubMed  Google Scholar 

  7. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G et al. Donor leukocyte transfusion for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76: 2462–2465.

    CAS  PubMed  Google Scholar 

  8. Collins RH Jr, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogenic bone marrow transplantation. J Clin Oncol 1997; 15: 433–444.

    PubMed  Google Scholar 

  9. Levine JE, Braun T, Penza SL, Beatty P, Cornetta K, Martino R et al. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol 2002; 20: 405–412.

    CAS  PubMed  Google Scholar 

  10. Bhatia V, Porter DL . Novel approaches to allogeneic stem cell therapy. Expert Opin Biol Ther 2001; 1: 3–15.

    CAS  PubMed  Google Scholar 

  11. Porter DL, Luger SM, Duffy KM, Stadtmauer EA, Laport G, Schuster SJ et al. Allogeneic cell therapy for patients who relapse after autologous stem cell transplantation. Biol Blood Marrow Transplant 2001; 7: 230–238.

    CAS  PubMed  Google Scholar 

  12. Salama M, Nevill T, Marcellus D, Parker P, Johnson M, Kirk A et al. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant 2000; 26: 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  13. Collins RH Jr, Goldstein S, Giralt S, Levine J, Porter D, Drobyski W et al. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant 2000; 26: 511–516.

    PubMed  Google Scholar 

  14. Porter DL, Collins RH Jr, Hardy C, Kernan NA, Drobyski WR, Giralt S et al. Treatment of relapsed leukemia after unrelated donor marrow transplantation with unrelated donor leukocyte infusions. Blood 2000; 95: 1214–1221.

    CAS  PubMed  Google Scholar 

  15. Porter DL, Connors JM, Van Deerlin VMD, Duffy KM, McGarigle C, Saidman SL et al. Graft versus tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J Clin Oncol 1999; 17: 1234–1243.

    CAS  PubMed  Google Scholar 

  16. Porter DL, Collins RH Jr, Shpilberg O, Drobyski WR, Connors JM, Sproles A et al. Long-term follow-up of patients who achieved complete remission after donor leukocyte infusions. Biol Blood Marrow Transplant 1999; 5: 253–261.

    CAS  PubMed  Google Scholar 

  17. Porter DL, Antin JH . The graft-versus-leukemia effects of allogeneic cell therapy. Annu Rev Med 1999; 50: 369–386.

    CAS  PubMed  Google Scholar 

  18. Klyuchnikov E, Holler E, Bornhauser M, Kobbe G, Nagler A, Shimoni A et al. Donor lymphocyte infusions and second transplantation as salvage treatment for relapsed myelofibrosis after reduced-intensity allografting. Br J Haematol 2012; 159: 172–181.

    PubMed  Google Scholar 

  19. Schmid C, Labopin M, Nagler A, Bornhauser M, Finke J, Fassas A et al. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 2007; 25: 4938–4945.

    CAS  PubMed  Google Scholar 

  20. Bar M, Sandmaier BM, Inamoto Y, Bruno B, Hari P, Chauncey T et al. Donor lymphocyte infusion for relapsed hematological malignancies after allogeneic hematopoietic cell transplantation: prognostic relevance of the initial CD3+ T cell dose. Biol Blood Marrow Transplant 2013; 19: 949–957.

    PubMed  Google Scholar 

  21. Bishop MR . Donor lymphocyte infusion: beauty is in the eye of the beholder. Biol Blood Marrow Transplant 2013; 19: 849–850.

    PubMed  Google Scholar 

  22. Miller JS, Weisdorf DJ, Burns LJ, Slungaard A, Wagner JE, Verneris MR et al. Lymphodepletion followed by donor lymphocyte infusion (DLI) causes significantly more acute graft-versus-host disease than DLI alone. Blood 2007; 110: 2761–2763.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Guillaume T, Gaugler B, Chevallier P, Delaunay J, Ayari S, Clavert A et al. Escalated lymphodepletion followed by donor lymphocyte infusion can induce a graft-versus-host response without overwhelming toxicity. Bone Marrow Transplant 2012; 47: 1112–1117.

    CAS  PubMed  Google Scholar 

  24. Deol A, Lum LG . Role of donor lymphocyte infusions in relapsed hematological malignancies after stem cell transplantation revisited. Cancer Treat Rev 2010; 36: 528–538.

    PubMed  PubMed Central  Google Scholar 

  25. Alyea EP, Soiffer RJ, Canning C, Neuberg D, Schlossman R, Pickett C et al. Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood 1998; 91: 3671–3680.

    CAS  PubMed  Google Scholar 

  26. Giralt S, Hester J, Huh Y, Hirsch-Ginsberg C, Rondón G, Seong D et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogenic bone marrow transplantation. Blood 1995; 86: 4337–4343.

    CAS  PubMed  Google Scholar 

  27. Alyea EP, Canning C, Neuberg D, Daley H, Houde H, Giralt S et al. CD8+ cell depletion of donor lymphocyte infusions using cd8 monoclonal antibody-coated high-density microparticles (CD8-HDM) after allogeneic hematopoietic stem cell transplantation: a pilot study. Bone Marrow Transplant 2004; 34: 123–128.

    CAS  PubMed  Google Scholar 

  28. Zorn E, Wang KS, Hochberg EP, Canning C, Alyea EP, Soiffer RJ et al. Infusion of CD4+ donor lymphocytes induces the expansion of CD8+ donor T cells with cytolytic activity directed against recipient hematopoietic cells. Clin Cancer Res 2002; 8: 2052–2060.

    CAS  PubMed  Google Scholar 

  29. Zhang W, Choi J, Zeng W, Rogers SA, Alyea EP, Rheinwald JG et al. Graft-versus-leukemia antigen CML66 elicits coordinated B-cell and T-cell immunity after donor lymphocyte infusion. Clin Cancer Res 2010; 16: 2729–2739.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bachireddy P, Hainz U, Rooney M, Pozdnyakova O, Aldridge J, Zhang W et al. Reversal of in situ T-cell exhaustion during effective human antileukemia responses to donor lymphocyte infusion. Blood 2014; 123: 1412–1421.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Maury S, Lemoine FM, Hicheri Y, Rosenzwajg M, Badoual C, Cherai M et al. CD4+CD25+ regulatory T cell depletion improves the graft-versus-tumor effect of donor lymphocytes after allogeneic hematopoietic stem cell transplantation. Sci Transl Med 2010; 2: 41ra52.

    PubMed  Google Scholar 

  32. Fowler DH, Mossoba ME, Steinberg SM, Halverson DC, Stroncek D, Khuu HM et al. Phase 2 clinical trial of rapamycin-resistant donor CD4+ Th2/Th1 (T-Rapa) cells after low-intensity allogeneic hematopoietic cell transplantation. Blood 2013; 121: 2864–2874.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Falkenburg JH, Wafelman AR, Joosten P, Smit WM, van Bergen CA, Bongaerts R et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 1999; 94: 1201–1208.

    CAS  PubMed  Google Scholar 

  34. Kloosterboer FM, van Luxemburg-Heijs SA, van Soest RA, van Egmond HM, Barbui AM, Strijbosch MP et al. Minor histocompatibility antigen-specific T cells with multiple distinct specificities can be isolated by direct cloning of IFNgamma-secreting T cells from patients with relapsed leukemia responding to donor lymphocyte infusion. Leukemia 2005; 19: 83–90.

    CAS  PubMed  Google Scholar 

  35. Marijt E, Wafelman A, van der Hoorn M, van Bergen C, Bongaerts R, van Luxemburg-Heijs S et al. Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica 2007; 92: 72–80.

    PubMed  Google Scholar 

  36. Meij P, Jedema I, van der Hoorn MA, Bongaerts R, Cox L, Wafelman AR et al. Generation and administration of HA-1-specific T-cell lines for the treatment of patients with relapsed leukemia after allogeneic stem cell transplantation: a pilot study. Haematologica 2012; 97: 1205–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. van Loenen MM, de Boer R, van Liempt E, Meij P, Jedema I, Falkenburg JHF et al. A Good Manufacturing Practice procedure to engineer donor virus-specific T cells into potent anti-leukemic effector cells. Haematologica 2014; 99: 759–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Warren EH, Fujii N, Akatsuka Y, Chaney CN, Mito JK, Loeb KR et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood 2010; 115: 3869–3878.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hardy NM, Fellowes V, Rose JJ, Odom J, Pittaluga S, Steinberg SM et al. Costimulated tumor-infiltrating lymphocytes are a feasible and safe alternative donor cell therapy for relapse after allogeneic stem cell transplantation. Blood 2012; 119: 2956–2959.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bornhauser M, Thiede C, Platzbecker U, Kiani A, Oelschlaegel U, Babatz J et al. Prophylactic transfer of BCR-ABL-, PR1-, and WT1-reactive donor T cells after T cell-depleted allogeneic hematopoietic cell transplantation in patients with chronic myeloid leukemia. Blood 2011; 117: 7174–7184.

    PubMed  Google Scholar 

  41. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010; 116: 4099–4102.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 2012; 119: 3940–3950.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119: 2709–2720.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5: 177ra138.

    Google Scholar 

  48. Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 2013; 122: 2965–2973.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford WG et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 2013; 122: 4129–4139.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gross G, Gorochov G, Waks T, Eshhar Z . Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant Proc 1989; 21: 127–130.

    CAS  PubMed  Google Scholar 

  51. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12: 6106–6115.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Melenhorst JJ, Levine BL . Innovation and opportunity for chimeric antigen receptor targeted T cells. Cytotherapy 2013; 15: 1046–1053.

    CAS  PubMed  Google Scholar 

  53. Heslop HE . Safer CARS. Mol Ther 2010; 18: 661–662.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M . Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18: 666–668.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kochenderfer JN, Rosenberg SA . Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 2013; 10: 267–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fry TJ, Mackall CL . T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hemaology Am Soc Hematol Educ Program 2013; 2013: 348–353.

    Google Scholar 

  57. Maus MV, Grupp SA, Porter DL, June CH . Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014; 123: 2625–2635.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011; 118: 6050–6056.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 2007; 15: 825–833.

    CAS  PubMed  Google Scholar 

  60. Savoldo B, Rooney CM, Di Stasi A, Abken H, Hombach A, Foster AE et al. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 2007; 110: 2620–2630.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 2006; 108: 3890–3897.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ahmed N, Ratnayake M, Savoldo B, Perlaky L, Dotti G, Wels WS et al. Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res 2007; 67: 5957–5964.

    CAS  PubMed  Google Scholar 

  63. Casucci M, Nicolis di Robilant B, Falcone L, Camisa B, Norelli M, Genovese P et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 2013; 122: 3461–3472.

    CAS  PubMed  Google Scholar 

  64. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 2004; 173: 7125–7130.

    CAS  PubMed  Google Scholar 

  65. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA et al. Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 2005; 28: 258–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kalos M . Biomarkers in T cell therapy clinical trials. J Transl Med 2011; 9: 138.

    PubMed  PubMed Central  Google Scholar 

  67. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A . Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–712.

    CAS  PubMed  Google Scholar 

  68. Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG . Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med 2005; 11: 1299–1305.

    CAS  PubMed  Google Scholar 

  69. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF et al. A human memory T cell subset with stem cell-like properties. Nat Med 2011; 17: 1290–1297.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 2013; 121: 573–584.

    CAS  PubMed  Google Scholar 

  71. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 2005; 115: 1616–1626.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR . Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 2008; 118: 294–305.

    CAS  PubMed  Google Scholar 

  73. Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T, Thompson CB et al. Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 1997; 159: 5921–5930.

    CAS  PubMed  Google Scholar 

  74. Bondanza A, Valtolina V, Magnani Z, Ponzoni M, Fleischhauer K, Bonyhadi M et al. Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Blood 2006; 107: 1828–1836.

    CAS  PubMed  Google Scholar 

  75. Kaneko S, Mastaglio S, Bondanza A, Ponzoni M, Sanvito F, Aldrighetti L et al. IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes. Blood 2009; 113: 1006–1015.

    CAS  PubMed  Google Scholar 

  76. Porter DL, Levine BL, Bunin N, Stadtmauer EA, Luger SM, Goldstein S et al. A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood 2006; 107: 1325–1331.

    CAS  PubMed  Google Scholar 

  77. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011; 365: 1673–1683.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Moretta L, Moretta A . Killer immunoglobulin-like receptors. Curr Opin Immunol 2004; 16: 626–633.

    CAS  PubMed  Google Scholar 

  79. Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999; 94: 333–339.

    CAS  PubMed  Google Scholar 

  80. Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kuhne T et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 2004; 18: 1835–1838.

    CAS  PubMed  Google Scholar 

  81. Koehl U, Sorensen J, Esser R, Zimmermann S, Gruttner HP, Tonn T et al. IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Mol Dis 2004; 33: 261–266.

    CAS  PubMed  Google Scholar 

  82. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 2010; 28: 955–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nguyen S, Beziat V, Norol F, Uzunov M, Trebeden-Negre H, Azar N et al. Infusion of allogeneic natural killer cells in a patient with acute myeloid leukemia in relapse after haploidentical hematopoietic stem cell transplantation. Transfusion 2011; 51: 1769–1778.

    PubMed  Google Scholar 

  84. Stern M, Passweg JR, Meyer-Monard S, Esser R, Tonn T, Soerensen J et al. Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. Bone Marrow Transplant 2012; 48: 433–438.

    PubMed  Google Scholar 

  85. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    CAS  PubMed  Google Scholar 

  86. Curti A, Ruggeri L, D'Addio A, Bontadini A, Dan E, Motta MR et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 2011; 118: 3273–3279.

    CAS  PubMed  Google Scholar 

  87. Introna M, Borleri G, Conti E, Franceschetti M, Barbui AM, Broady R et al. Repeated infusions of donor-derived cytokine-induced killer cells in patients relapsing after allogeneic stem cell transplantation: a phase I study. Haematologica 2007; 92: 952–959.

    PubMed  Google Scholar 

  88. Laport GG, Sheehan K, Baker J, Armstrong R, Wong RM, Lowsky R et al. Adoptive immunotherapy with cytokine-induced killer cells for patients with relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2011; 17: 1679–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Linn YC, Niam M, Chu S, Choong A, Yong HX, Heng KK et al. The anti-tumour activity of allogeneic cytokine-induced killer cells in patients who relapse after allogeneic transplant for haematological malignancies. Bone Marrow Transplant 2012; 47: 957–966.

    CAS  PubMed  Google Scholar 

  90. Zhou X, Zhu J, Sun H, Shao L, Xu M, Guo H . Family haploidentical donor-derived cytokine-induced killer cell biotherapy combined with bortezomib in two patients with relapsed multiple myeloma in a non-allogeneic transplant setting. Leuk Lymphoma 2013; 54: 209–211.

    CAS  PubMed  Google Scholar 

  91. Introna M, Pievani A, Borleri G, Capelli C, Algarotti A, Mico C et al. Feasibility and safety of adoptive immunotherapy with CIK cells after cord blood transplantation. Biol Blood Marrow Transplant 2010; 16: 1603–1607.

    PubMed  Google Scholar 

  92. Introna M, Franceschetti M, Ciocca A, Borleri G, Conti E, Golay J et al. Rapid and massive expansion of cord blood-derived cytokine-induced killer cells: an innovative proposal for the treatment of leukemia relapse after cord blood transplantation. Bone Marrow Transplant 2006; 38: 621–627.

    CAS  PubMed  Google Scholar 

  93. Kershaw MH, Westwood JA, Darcy PK . Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013; 13: 525–541.

    CAS  PubMed  Google Scholar 

  94. Fischbach MA, Bluestone JA, Lim WA . Cell-based therapeutics: the next pillar of medicine. Sci Transl Med 2013; 5: 179ps177.

    Google Scholar 

  95. Marin V, Pizzitola I, Agostoni V, Attianese GM, Finney H, Lawson A et al. Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica 2010; 95: 2144–2152.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Terakura S, Yamamoto TN, Gardner RA, Turtle CJ, Jensen MC, Riddell SR . Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 2012; 119: 72–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009; 5: 31–42.

    CAS  PubMed  Google Scholar 

  98. Snauwaert S, Vandekerckhove B, Kerre T . Can immunotherapy specifically target acute myeloid leukemic stem cells? Oncoimmunology 2013; 2: e22943.

    PubMed  PubMed Central  Google Scholar 

  99. Tettamanti S, Marin V, Pizzitola I, Magnani CF, Giordano Attianese GM, Cribioli E et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol 2013; 161: 389–401.

    CAS  PubMed  Google Scholar 

  100. Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 2013; 122: 3138–3148.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, Lassailly F, Tettamanti S, Spinelli O et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia 2014; e-pub ahead of print 7 February 2014 doi:10.1038/leu.2014.62.

    CAS  PubMed  Google Scholar 

  102. Hackett PB, Largaespada DA, Cooper LJ . A transposon and transposase system for human application. Mol Ther 2010; 18: 674–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kebriaei P, Huls H, Jena B, Munsell M, Jackson R, Lee DA et al. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum Gene Ther 2012; 23: 444–450.

    CAS  PubMed  Google Scholar 

  104. Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 2014; 123: 2343–2354.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Associazione Italiana per la Ricerca contro il Cancro (AIRC) ‘Special Program Molecular Clinical Oncology 5x1000’ (Innate Immunity in Cancer to AR and AB, ref code 9962) and AIRC-IG8666 to AB and Associazione Italiana Lotta alla Leucemia (AIL), Sezione ‘Paolo Belli’, Bergamo, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Rambaldi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rambaldi, A., Biagi, E., Bonini, C. et al. Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches. Leukemia 29, 1–10 (2015). https://doi.org/10.1038/leu.2014.189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.189

This article is cited by

Search

Quick links