Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Constitutive activation of p38 MAPK in tumor cells contributes to osteolytic bone lesions in multiple myeloma

A Corrigendum to this article was published on 04 February 2015

Abstract

Bone destruction is a hallmark of multiple myeloma and affects more than 80% of patients. However, current therapy is unable to completely cure and/or prevent bone lesions. Although it is accepted that myeloma cells mediate bone destruction by inhibition of osteoblasts and activation of osteoclasts, the underlying mechanism is still poorly understood. This study demonstrates that constitutive activation of p38 mitogen-activated protein kinase in myeloma cells is responsible for myeloma-induced osteolysis. Our results show that p38 is constitutively activated in most myeloma cell lines and primary myeloma cells from patients. Myeloma cells with high/detectable p38 activity, but not those with low/undetectable p38 activity, injected into severe combined immunodeficient (SCID) or SCID-hu mice caused bone destruction. Inhibition or knockdown of p38 in human myeloma reduced or prevented myeloma-induced osteolytic bone lesions without affecting tumor growth, survival, or homing to bone. Mechanistic studies showed that myeloma cell p38 activity inhibited osteoblastogenesis and bone formation and activated osteoclastogenesis and bone resorption in myeloma-bearing SCID mice. This study elucidates a novel molecular mechanism—activation of p38 signaling in myeloma cells—by which myeloma cells induce osteolytic bone lesions, and indicates that targeting myeloma cell p38 may be a viable approach to treating or preventing myeloma bone disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Roodman GD . Myeloma bone disease: pathogenesis and treatment. Oncology 2005; 19: 983–984, 986.

    PubMed  Google Scholar 

  2. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494.

    Article  CAS  Google Scholar 

  3. Giuliani N, Rizzoli V, Roodman GD . Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 2006; 108: 3992–3996.

    Article  CAS  PubMed  Google Scholar 

  4. Wang S, Hong S, Yang J, Qian J, Zhang X, Shpall E et al. Optimizing immunotherapy in multiple myeloma: restoring the function of patients’ monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood 2006; 108: 4071–4077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q . Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 2006; 107: 2432–2439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie J, Qian J, Yang J, Wang S, Freeman ME, Yi Q . Critical roles of Raf/MEK/ERK and PI3K/AKT signaling and inactivation of p38 MAP kinase in the differentiation and survival of monocyte-derived immature dendritic cells. Exp Hematol 2005; 33: 564–572.

    Article  CAS  PubMed  Google Scholar 

  7. Wei S, Siegal GP . p38 MAPK as a potential therapeutic target for inflammatory osteolysis. Adv Anat Pathol 2007; 14: 42–45.

    Article  CAS  PubMed  Google Scholar 

  8. Mbalaviele G, Anderson G, Jones A, De Ciechi P, Settle S, Mnich S et al. Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction. J Pharmacol Exp Ther 2006; 317: 1044–1053.

    Article  CAS  PubMed  Google Scholar 

  9. Bohm C, Hayer S, Kilian A, Zaiss MM, Finger S, Hess A et al. The alpha-isoform of p38 MAPK specifically regulates arthritic bone loss. J Immunol 2009; 183: 5938–5947.

    Article  PubMed  Google Scholar 

  10. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL . IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 2005; 115: 282–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hideshima T, Akiyama M, Hayashi T, Richardson P, Schlossman R, Chauhan D et al. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 2003; 101: 703–705.

    Article  CAS  Google Scholar 

  12. Hideshima T, Podar K, Chauhan D, Ishitsuka K, Mitsiades C, Tai YT et al. p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 2004; 23: 8766–8776.

    Article  CAS  PubMed  Google Scholar 

  13. Navas T, Zhou L, Estes M, Haghnazari E, Nguyen AN, Mo Y et al. Inhibition of p38alpha MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone marrow microenvironment. Leuk Lymphoma 2008; 49: 1963–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen AN, Stebbins EG, Henson M, O’Young G, Choi SJ, Quon D et al. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation. Exp Cell Res 2006; 312: 1909–1923.

    Article  CAS  PubMed  Google Scholar 

  15. Wen J, Cheng HY, Feng Y, Rice L, Liu S, Mo A et al. P38 MAPK inhibition enhancing ATO-induced cytotoxicity against multiple myeloma cells. Br J Haematol 2008; 140: 169–180.

    Article  CAS  PubMed  Google Scholar 

  16. Wen J, Feng Y, Huang W, Chen H, Liao B, Rice L et al. Enhanced antimyeloma cytotoxicity by the combination of arsenic trioxide and bortezomib is further potentiated by p38 MAPK inhibition. Leuk Res 34: 85–92.

    Article  CAS  PubMed  Google Scholar 

  17. Lee ZH, Kim HH . Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem Biophys Res Commun 2003; 305: 211–214.

    Article  CAS  PubMed  Google Scholar 

  18. Zwerina J, Hayer S, Redlich K, Bobacz K, Kollias G, Smolen JS et al. Activation of p38 MAPK is a key step in tumor necrosis factor-mediated inflammatory bone destruction. Arthritis Rheum 2006; 54: 463–472.

    Article  CAS  PubMed  Google Scholar 

  19. Hiruma Y, Honjo T, Jelinek DF, Windle JJ, Shin J, Roodman GD et al. Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation. Blood 2009; 113: 4894–4902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamiya N, Kobayashi T, Mochida Y, Yu PB, Yamauchi M, Kronenberg HM et al. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res 25: 200–210.

    Article  PubMed Central  Google Scholar 

  21. Vanderkerken K, Medicherla S, Coulton L, De Raeve H, Willems A, Lawson M et al. Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma. Cancer Res 2007; 67: 4572–4577.

    Article  CAS  PubMed  Google Scholar 

  22. Yaccoby S, Barlogie B, Epstein J . Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 1998; 92: 2908–2913.

    CAS  PubMed  Google Scholar 

  23. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD. . Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007; 109: 2106–2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang J, Cao Y, Hong S, Li H, Qian J, Kwak LW et al. Human-like mouse models for testing the efficacy and safety of anti-beta2-microglobulin monoclonal antibodies to treat myeloma. Clin Cancer Res 2009; 15: 951–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang J, Qian J, Wezeman M, Wang S, Lin P, Wang M et al. Targeting beta2-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Cell 2006; 10: 295–307.

    Article  CAS  PubMed  Google Scholar 

  26. Yang J, Wezeman M, Zhang X, Lin P, Wang M, Qian J et al. Human C-reactive protein binds activating Fcgamma receptors and protects myeloma tumor cells from apoptosis. Cancer Cell 2007; 12: 252–265.

    Article  PubMed  Google Scholar 

  27. Roodman GD . Pathogenesis of myeloma bone disease. Leukemia 2009; 23: 435–441.

    Article  CAS  PubMed  Google Scholar 

  28. Awasthi A, Mathur R, Khan A, Joshi BN, Jain N, Sawant S et al. CD40 signaling is impaired in L. major-infected macrophages and is rescued by a p38MAPK activator establishing a host-protective memory T cell response. J Exp Med 2003; 197: 1037–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roodman GD . Treatment strategies for bone disease. Bone Marrow Transplant 2007; 40: 1139–1146.

    Article  CAS  PubMed  Google Scholar 

  30. Binder NB, Niederreiter B, Hoffmann O, Stange R, Pap T, Stulnig TM et al. Estrogen-dependent and C-C chemokine receptor-2-dependent pathways determine osteoclast behavior in osteoporosis. Nat Med 2009; 15: 417–424.

    Article  CAS  PubMed  Google Scholar 

  31. Yan D, Gurumurthy A, Wright M, Pfeiler TW, Loboa EG, Everett ET . Genetic background influences fluoride’s effects on osteoclastogenesis. Bone 2007; 41: 1036–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang H, Chang EJ, Ryu J, Lee ZH, Lee Y, Kim HH . Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem Biophys Res Commun 2006; 351: 99–105.

    Article  CAS  PubMed  Google Scholar 

  33. von Metzler I, Krebbel H, Hecht M, Manz RA, Fleissner C, Mieth M et al. Bortezomib inhibits human osteoclastogenesis. Leukemia 2007; 21: 2025–2034.

    Article  CAS  PubMed  Google Scholar 

  34. Yun HJ, Lee EG, Lee SI, Chae HJ, Yoo WH . Adrenomedullin inhibits MAPK pathway-dependent rheumatoid synovial fibroblast-mediated osteoclastogenesis by IL-1 and TNF-alpha. Rheumatol Int 2009; 29: 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki A, Guicheux J, Palmer G, Miura Y, Oiso Y, Bonjour JP et al. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone 2002; 30: 91–98.

    Article  CAS  PubMed  Google Scholar 

  36. Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 2010; 120: 2457–2473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gallea S, Lallemand F, Atfi A, Rawadi G, Ramez V, Spinella-Jaegle S et al. Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells. Bone 2001; 28: 491–498.

    Article  CAS  PubMed  Google Scholar 

  38. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J . Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res 2003; 18: 2060–2068.

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Ma R, Flavell RA, Choi ME . Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for activation of p38alpha and p38delta MAPK isoforms by TGF-beta 1 in murine mesangial cells. J Biol Chem 2002; 277: 47257–47262.

    Article  CAS  PubMed  Google Scholar 

  40. Lee KS, Hong SH, Bae SC . Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 2002; 21: 7156–7163.

    Article  CAS  PubMed  Google Scholar 

  41. Vinals F, Lopez-Rovira T, Rosa JL, Ventura F . Inhibition of PI3K/p70 S6K and p38 MAPK cascades increases osteoblastic differentiation induced by BMP-2. FEBS Lett 2002; 510: 99–104.

    Article  CAS  PubMed  Google Scholar 

  42. Esteve FR, Roodman GD . Pathophysiology of myeloma bone disease. Best Pract Res Clin Haematol 2007; 20: 613–624.

    Article  CAS  PubMed  Google Scholar 

  43. Roodman GD . Bone-breaking cancer treatment. Nat Med 2007; 13: 25–26.

    Article  CAS  PubMed  Google Scholar 

  44. Ishitsuka K, Hideshima T, Neri P, Vallet S, Shiraishi N, Okawa Y et al. p38 mitogen-activated protein kinase inhibitor LY2228820 enhances bortezomib-induced cytotoxicity and inhibits osteoclastogenesis in multiple myeloma; therapeutic implications. Br J Haematol 2008; 141: 598–606.

    Article  CAS  PubMed  Google Scholar 

  45. Wen J, Feng Y, Huang W, Chen H, Liao B, Rice L et al. Enhanced antimyeloma cytotoxicity by the combination of arsenic trioxide and bortezomib is further potentiated by p38 MAPK inhibition. Leuk Res 2010; 34: 85–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Brian Dawson for technical support with ÎĽ-CT scanning and analysis. We also thank our departmental Myeloma Tissue Bank for patient samples. This work was supported by National Cancer Institute R01 Grants CA138402 and CA138398 and P50 Grant CA142509 (Q Yi), the Leukemia and Lymphoma Society Translational Research grants, the Multiple Myeloma Research Foundation (Q Yi), the Commonwealth Foundation for Cancer Research (Q Yi), National Cancer Institute K99/R00 Grant CA137158 (J Yang), the International Myeloma Foundation (J Yang), the Lymphoma Research Foundation (J Yang), the American Society of Hematology (J Yang), and by funds from the University Cancer Foundation and the Center for Targeted Therapy of The University of Texas MD Anderson Cancer Center (Q Yi).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Yang or Q Yi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., He, J., Wang, J. et al. Constitutive activation of p38 MAPK in tumor cells contributes to osteolytic bone lesions in multiple myeloma. Leukemia 26, 2114–2123 (2012). https://doi.org/10.1038/leu.2012.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.71

Keywords

This article is cited by

Search

Quick links