Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

Downregulation of specific miRNAs in hyperdiploid multiple myeloma mimics the oncogenic effect of IgH translocations occurring in the non-hyperdiploid subtype

Abstract

Currently, multiple myeloma (MM) patients are broadly grouped into a non-hyperdiploid (nh-MM) group, highly enriched for IgH translocations, or into a hyperdiploid (h-MM) group, which is typically characterized by trisomies of some odd-numbered chromosomes. We compared the micro RNA (miRNA) expression profiles of these two groups and we identified 16 miRNAs that were downregulated in the h-MM group, relative to the nh-MM group. We found that target genes of the most differentially expressed miRNAs are directly involved in the pathogenesis of MM; specifically, the inhibition of hsa-miR-425, hsa-miR-152 and hsa-miR-24, which are all downregulated in h-MM, leads to the overexpression of CCND1, TACC3, MAFB, FGFR3 and MYC, which are the also the oncogenes upregulated by the most frequent IgH chromosomal translocations occurring in nh-MM. Importantly, we showed that the downregulation of these specific miRNAs and the upregulation of their targets also occur simultaneously in primary cases of h-MM. These data provide further evidence on the unifying role of cyclin D pathways deregulation as the key mechanism involved in the development of both groups of MM. Finally, they establish the importance of miRNA deregulation in the context of MM, thereby opening up the potential for future therapeutic approaches based on this molecular mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kyle RA, Rajkumar SV . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    Article  CAS  PubMed  Google Scholar 

  2. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009; 23: 2210–2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chng WJ, Santana-Davila R, Van Wier SA, Ahmann GJ, Jalal SM, Bergsagel PL et al. Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia 2006; 20: 807–813.

    Article  CAS  PubMed  Google Scholar 

  4. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J . Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005; 106: 296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res 2007; 67: 2982–2989.

    Article  CAS  PubMed  Google Scholar 

  6. Largo C, Saez B, Alvarez S, Suela J, Ferreira B, Blesa D et al. Multiple myeloma primary cells show a highly rearranged unbalanced genome with amplifications and homozygous deletions irrespective of the presence of immunoglobulin-related chromosome translocations. Haematologica 2007; 92: 795–802.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y, Barlogie B, Shaughnessy JD . The molecular characterization and clinical management of multiple myeloma in the post-genome era. Leukemia 2009; 23: 1941–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 116: 2543–2553.

    Article  CAS  PubMed  Google Scholar 

  9. Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, Troska-Price T et al. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 25: 1026–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 2008; 105: 12885–12890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lionetti M, Biasiolo M, Agnelli L, Todoerti K, Mosca L, Fabris S et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 2009; 114: e20–e26.

    Article  CAS  PubMed  Google Scholar 

  12. Pichiorri F, De Luca L, Aqeilan RI . MicroRNAs: new players in multiple myeloma. Front Genet 2: 22.

  13. Vatsveen TK, Tian E, Kresse SH, Meza-Zepeda LA, Gabrea A, Glebov O et al. OH-2, a hyperdiploid myeloma cell line without an IGH translocation, has a complex translocation juxtaposing MYC near MAFB and the IGK locus. Leuk Res 2009; 33: 1670–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Agnelli L, Fabris S, Bicciato S, Basso D, Baldini L, Morabito F et al. Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma. Br J Haematol 2007; 136: 565–573.

    Article  CAS  PubMed  Google Scholar 

  15. Frenquelli M, Muzio M, Scielzo C, Fazi C, Scarfo L, Rossi C et al. MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood 115: 3949–3959.

    Article  CAS  PubMed  Google Scholar 

  16. Vilas-Zornoza A, Agirre X, Martin-Palanco V, Martin-Subero JI, San Jose-Eneriz E, Garate L et al. Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia. PLoS One 6: e17012.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Largo C, Alvarez S, Saez B, Blesa D, Martin-Subero JI, Gonzalez-Garcia I et al. Identification of overexpressed genes in frequently gained/amplified chromosome regions in multiple myeloma. Haematologica 2006; 91: 184–191.

    CAS  PubMed  Google Scholar 

  18. Martin-Subero JI, Ammerpohl O, Bibikova M, Wickham-Garcia E, Agirre X, Alvarez S et al. A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PLoS One 2009; 4: e6986.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gutierrez NC, Sarasquete ME, Misiewicz-Krzeminska I, Delgado M, De Las Rivas J, Ticona FV et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia 24: 629–637.

    Article  PubMed  Google Scholar 

  20. Stewart JP, Thompson A, Santra M, Barlogie B, Lappin TR, Shaughnessy J . Correlation of TACC3, FGFR3, MMSET and p21 expression with the t(4;14)(p16.3;q32) in multiple myeloma. Br J Haematol 2004; 126: 72–76.

    Article  CAS  PubMed  Google Scholar 

  21. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  22. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol Cell 2009; 35: 610–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lerner M, Harada M, Loven J, Castro J, Davis Z, Oscier D et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res 2009; 315: 2941–2952.

    Article  CAS  PubMed  Google Scholar 

  24. Wong KY, Liang R, So CC, Jin DY, Costello JF, Chim CS . Epigenetic silencing of MIR203 in multiple myeloma. Br J Haematol 154: 569–578.

    Article  CAS  PubMed  Google Scholar 

  25. Morgan GJ, Walker BA, Davies FE . The genetic architecture of multiple myeloma. Nat Rev Cancer 12: 335–348.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar S, Fonseca R, Ketterling RP, Dispenzieri A, Lacy MQ, Gertz MA et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood 119: 2100–2105.

  27. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou Y, Chen L, Barlogie B, Stephens O, Wu X, Williams DR et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci USA 107: 7904–7909.

    Article  CAS  Google Scholar 

  29. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 2009; 125: 2737–2743.

    Article  CAS  PubMed  Google Scholar 

  30. Fabbri M, Calin GA . Epigenetics and miRNAs in human cancer. Adv Genet 70: 87–99.

  31. Farag SS . The potential role of Aurora kinase inhibitors in haematological malignancies. Br J Haematol 155: 561–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chng WJ, Braggio E, Mulligan G, Bryant B, Remstein E, Valdez R et al. The centrosome index is a powerful prognostic marker in myeloma and identifies a cohort of patients that might benefit from aurora kinase inhibition. Blood 2008; 111: 1603–1609.

    Article  CAS  PubMed  Google Scholar 

  33. Braconi C, Huang N, Patel T . MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51: 881–890.

  34. Huang J, Wang Y, Guo Y, Sun S . Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 52: 60–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded by INTRASALUD PI 08-0440 (to JCC), Fondo de Investigaciones Sanitarias (Spain). We thank the staff of the Molecular Cytogenetics Group at the CNIO (Madrid, Spain), the Department of Genetics, University of Navarra (Pamplona, Spain) and the Division of Hematology–Oncology, Mayo Clinic (Scottsdale, Arizona, USA) for their support in the molecular cytogenetic characterization of the samples.

Author contributions

JCC designed the study and wrote the paper; AR-M, BF, TH and XA performed the experiments; GG-L, BIF, AR-M, SA, SR-P and JCC analyzed the data; FP, MJC, JM and RF provided key reagents and materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Cigudosa.

Ethics declarations

Competing interests

Relevant to this work Dr Fonseca holds a patent for the prognostication of MM based on the genetic categorization of the disease. Not relevant to this work, Dr Fonseca has received consulting fees from Medtronic, Otsuka, Celgene, Genzyme, BMS and AMGEN. He has also received funding for research from Cylene and Onyx. The remaining authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rio-Machin, A., Ferreira, B., Henry, T. et al. Downregulation of specific miRNAs in hyperdiploid multiple myeloma mimics the oncogenic effect of IgH translocations occurring in the non-hyperdiploid subtype. Leukemia 27, 925–931 (2013). https://doi.org/10.1038/leu.2012.302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.302

Keywords

This article is cited by

Search

Quick links