Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

The immunoglobulin heavy chain gene 3′ enhancers induce Bcl2 deregulation and lymphomagenesis in murine B cells

Abstract

Human follicular B-cell lymphoma is associated with the t(14;18) chromosomal translocation that juxtaposes the Bcl2 proto-oncogene with the immunoglobulin heavy chain (Igh) locus, resulting in the deregulated expression of Bcl2. Our previous studies have shown that the Igh 3′ enhancers deregulate the Bcl2 expression in vitro. However, the effects of the Igh 3′ enhancer elements on Bcl2 expression in vivo are not known. To investigate the role of the Igh 3′ enhancers in Bcl2 deregulation, we used gene targeting to generate knock-in mice in which four DNase I-hypersensitive regions from the murine Igh 3′ region were integrated 3′ of the Bcl2 locus. Increased levels of Bcl2 mRNA and protein were observed in the B cells of Igh-3′E-bcl2 mice. B cells from Igh-3′E-bcl2 mice showed an extended survival in vitro compared with B cells from wild-type (Wt) mice. The Bcl2 promoter shift from P1 (the 5′ promoter) to P2 (the 3′ promoter) was observed in B cells from Igh-3′E-bcl2 mice, similar to human t(14;18) lymphomas. The IgH-3′E-bcl2 mice developed monoclonal B-cell follicular lymphomas, which were slowly progressive. These studies show that the Igh 3′ enhancers have an important role in the deregulation of Bcl2 and B-cell lymphomagenesis in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Yunis JJ, Oken MM, Kaplan ME, Ensrud KM, Howe RR, Theologides A . Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin's lymphomas. N Engl J Med 1982; 307: 1231.

    Article  CAS  PubMed  Google Scholar 

  2. Cleary ML, Smith SD, Sklar J . Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/imunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986; 47: 19–28.

    Article  CAS  PubMed  Google Scholar 

  3. Graninger WB, Seto M, Boutain B, Goldman P, Korsmeyer SJ . Expression of bcl-2 and bcl-2-Ig fusion transcripts in normal and neoplastic cells. J Clin Invest 1987; 80: 1512–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsujimoto Y, Croce C . Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci 1986; 83: 5214–5218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seto M, Jaeger U, Hockett RD, Graninger W, Bennett S, Goldman P et al. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J 1988; 7: 123–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katsumata M, Siegel RM, Louie DC, Miyashita T, Tsujimoto Y, Nowell PC et al. Differential effects of Bcl-2 on T and B cells in transgenic mice. Proc Natl Acad Sci USA 1992; 89: 11376–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP et al. Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57: 79–88.

    Article  CAS  PubMed  Google Scholar 

  8. Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM, Cory S et al. Enforced bcl-2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci USA 1991; 88: 8661–8665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McDonnell TJ, Korsmeyer SJ . Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 1991; 349: 254–256.

    Article  CAS  PubMed  Google Scholar 

  10. Strasser A, Harris AW, Bath ML, Cory S . Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990; 348: 331–333.

    Article  CAS  PubMed  Google Scholar 

  11. Strasser A, Harris AW, Cory S . Em-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene 1993; 8: 1–9.

    CAS  PubMed  Google Scholar 

  12. Egle A, Harris AW, Bath ML, O′Reilly L, Cory S . VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 2004; 103: 2276–2283.

    Article  CAS  PubMed  Google Scholar 

  13. Ogilvy S, Metcalf D, Print CG, Bath ML, Harris AW, Adams JM . Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci USA 1999; 96: 14943–14948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fiancette R, Amin R, Truffinet V, Vincent-Fabert C, Cogne N, Cogne M et al. A myeloma translocation-like model associating CCND1 with the immunoglobulin heavy-chain locus 3′ enhancers does not promote by itself B-cell malignancies. Leuk Res 2010; 34: 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  15. Truffinet V, Pinaud E, Cogne N, Petit B, Guglielmi L, Cogne M et al. The 3′ IgH locus control region is sufficient to deregulate a c-myc transgene and promote mature B cell malignancies with a predominant Burkitt-like phenotype. J Immunol 2007; 179: 6033–6042.

    Article  CAS  PubMed  Google Scholar 

  16. Wu Y, Mehew JW, Heckman CA, Arcinas M, Boxer LM . Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 2001; 20: 240–251.

    Article  CAS  PubMed  Google Scholar 

  17. Dariavach F, Williams GT, Campbell K, Pettersson S, Neuberger MS . The mouse IgH 3′ enhancer. Eur J Immunol 1991; 21: 1499–1504.

    Article  CAS  PubMed  Google Scholar 

  18. Madisen L, Groudine M . Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt′s lymphoma cells. Gene Devel 1994; 8: 2212–2226.

    Article  CAS  Google Scholar 

  19. Pettersson S, Cook GP, Bruggemann M, Williams GT, Neuberger MS . A second B cell-specific enhancer 3′ of the immunoglobulin heavy chain locus. Nature 1990; 344: 165–168.

    Article  CAS  PubMed  Google Scholar 

  20. Duan H, Heckman CA, Boxer LM . The immunoglobulin heavy-chain gene 3′ enhancers deregulate bcl-2 promoter usage in t(14;18) lymphoma cells. Oncogene 2007; 26: 2635–2641.

    Article  CAS  PubMed  Google Scholar 

  21. Lewandoski M, Meyers EN, Martin GR . Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harbor Symp Quant Biol 1997; 62: 159–168.

    Article  CAS  PubMed  Google Scholar 

  22. Hoyer KK, French SW, Turner DE, Nguyen MT, Renard M, Malone CS et al. Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma. Proc Natl Acad Sci USA 2002; 99: 14392–14397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawamoto H, Ikawa T, Ohmura K, Fujimoto S, Katsura Y . T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 2000; 12: 441–450.

    Article  CAS  PubMed  Google Scholar 

  24. Chang Y, Paige CJ, Wu GE . Enumeration and characterization of DJH structures in mouse fetal liver. EMBO J 1992; 11: 1891–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Raifu M, Howard M, Smith L, Hansen D, Goldsby R et al. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3′ to 5′ exonuclease activity. J Immunol Methods 2000; 233: 167–177.

    Article  CAS  PubMed  Google Scholar 

  26. Lefranc MP, Giudicelli V, Kaas Q, Duprat E, Jabado-Michaloud J, Scaviner D et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 2005; 33 (Database issue): D593–D597.

    Article  CAS  PubMed  Google Scholar 

  27. Dekker J, Rippe K, Dekker M, Kleckner N . Capturing chromosome conformation. Science 2002; 295: 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  28. Hagege H, Klous P, Braem C, Splinter E, Dekker J, Cathala G et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2007; 2: 1722–1733.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou G-L, Xin L, Song W, Di L-J, Liu G, Wu X-S et al. Active chromatin hub of the mouse a-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol 2006; 26: 5096–5105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kienle D, Krober A, Katzenberger T, Ott G, Leupolt E, Barth TF et al. VH mutation status and VDJ rearrangement structure in mantle cell lymphoma: correlation with genomic aberrations, clinical characteristics, and outcome. Blood 2003; 102: 3003–3009.

    Article  CAS  PubMed  Google Scholar 

  31. Tracey L, Aggarwal M, Garcia-Cosio M, Villuendas R, Algara P, Sanchez-Beato M et al. Somatic hypermutation signature in B-cell low-grade lymphomas. Haematologica 2008; 93: 1186–1194.

    Article  CAS  PubMed  Google Scholar 

  32. Heckman CA, Cao T, Somsouk L, Duan H, Mehew JW, Zhang C et al. Critical elements of the immunoglobulin heavy chain gene enhancers for deregulated expression of bcl-2. Cancer Res 2003; 63: 6666–6673.

    CAS  PubMed  Google Scholar 

  33. Greider C, Chattopadhyay A, Parkhurst C, Yang E . BCL-xL and BCL2 delay Myc-induced cell cycle entry through elevation of p27 and inhibition of G1 cyclin-dependent kinases. Oncogene 2002; 21: 7765–7775.

    Article  CAS  PubMed  Google Scholar 

  34. Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ et al. Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 2003; 22: 5459–5470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O′Reilly LA, Huang DCS, Strasser A . The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 1996; 15: 6979–6990.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Eng J Med 2004; 351: 2159–2169.

    Article  CAS  Google Scholar 

  37. de Jong D, Koster A, Hagenbeek A, Raemaekers J, Veldhuizen D, Heisterkamp S et al. Impact of the tumor microenvironment on prognosis in follicular lymphoma is dependent on specific treatment protocols. Haematologica 2009; 94: 70–77.

    Article  PubMed  Google Scholar 

  38. Petrasch S, Kosco M, Perez-Alvarez C, Schmitz J, Brittinger G . Proliferation of non-Hodgkin-lymphoma lymphocytes in vitro is dependent upon follicular dendritic cell interactions. Br J Haematol 1992; 80: 21–26.

    Article  CAS  PubMed  Google Scholar 

  39. Wahlin BE, Sander B, Christensson B, Kimby E . CD8+ T-cell content in diagnostic lymph nodes measured by flow cytometry is a predictor of survival in follicular lymphoma. Clin Cancer Res 2007; 13 (2 Part 1): 388–397.

    Article  CAS  PubMed  Google Scholar 

  40. Duan H, Xiang H, Ma L, Boxer LM . Functional long-range interactions of the IgH 3′ enhancers with the bcl-2 promoter region in t(14;18) lymphoma cells. Oncogene 2008; 27: 6720–6728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Evelyn Resurreccion, Stanford University, for her help and expertize with sectioning and immunohistochemical staining. This work was supported by the National Institutes of Health Grant CA56764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Boxer.

Ethics declarations

Competing interests

The authors declare no conflicts of interests.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, H., Noonan, E., Wang, J. et al. The immunoglobulin heavy chain gene 3′ enhancers induce Bcl2 deregulation and lymphomagenesis in murine B cells. Leukemia 25, 1484–1493 (2011). https://doi.org/10.1038/leu.2011.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.115

Keywords

This article is cited by

Search

Quick links