Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minimal Residual Disease

Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study

Abstract

A standardized, sensitive and universal method for minimal residual disease (MRD) detection in acute myeloid leukemia (AML) is still pending. Although hyperexpression of Wilms' tumor (WT1) gene transcript has been frequently proposed as an MRD marker in AML, wide comparability of the various methods used for evaluating WT1 expression has not been given. We established and standardized a multicenter approach for quantifying WT1 expression by quantitative reverse transcriptase PCR (qRT-PCR), on the basis of a primer/probe set combination at exons 6 and 7. In a series of quality-control rounds, we analyzed 69 childhood AML samples and 47 normal bone marrow (BM) samples from 4 participating centers. Differences in the individual WT1 expressions levels ranged within <0.5 log of the mean in 82% of the cases. In AML samples, the median WT1/1E+04 Abelson (ABL) expression was 3.5E+03 compared with that of 2.3E+01 in healthy BM samples. As 11.5% of childhood AML samples in this cohort harbored WT1 mutations in exon 7, the effect of mutations on WT1 expression has been investigated, showing that mutated cases expressed significantly higher WT1 levels than wild-type cases. Hence, our approach showed high reproducibility and applicability, even in patients with WT1 mutations; therefore, it can be widely used for the quantitation of WT1 expression in future clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cilloni D, Saglio G . WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Haematol 2004; 112: 79–84.

    Article  CAS  PubMed  Google Scholar 

  2. Lapillonne H, Renneville A, Auvrignon A, Flamant C, Blaise A, Perot C et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol 2006; 24: 1507–1515.

    Article  CAS  PubMed  Google Scholar 

  3. Weisser M, Kern W, Rauhut S, Schoch C, Hiddemann W, Haferlach T et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia 2005; 19: 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  4. Barragan E, Cervera J, Bolufer P, Ballester S, Martin G, Fernandez P et al. Prognostic implications of Wilms' tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica 2004; 89: 926–933.

    CAS  PubMed  Google Scholar 

  5. Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A et al. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res 2006; 12: 2434–2441.

    Article  CAS  PubMed  Google Scholar 

  6. Hollink IH, Zwaan CM, Zimmermann M, Arentsen-Peters TC, Pieters R, Cloos J et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 2009; 23: 262–270.

    Article  CAS  PubMed  Google Scholar 

  7. Keilholz U, Menssen HD, Gaiger A, Menke A, Oji Y, Oka Y et al. Wilms' tumour gene 1 (WT1) in human neoplasia. Leukemia 2005; 19: 1318–1323.

    Article  CAS  PubMed  Google Scholar 

  8. Yang L, Han Y, Suarez SF, Minden MD . A tumor suppressor and oncogene: the WT1 story. Leukemia 2007; 21: 868–876.

    Article  CAS  PubMed  Google Scholar 

  9. Trka J, Kalinova M, Hrusak O, Zuna J, Krejci O, Madzo J et al. Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia 2002; 16: 1381–1389.

    Article  CAS  PubMed  Google Scholar 

  10. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002; 16: 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  11. Ostergaard M, Olesen LH, Hasle H, Kjeldsen E, Hokland P . WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients - results from a single-centre study. Br J Haematol 2004; 125: 590–600.

    Article  CAS  PubMed  Google Scholar 

  12. Osborne D, Frost L, Tobal K, Yin JAL . Elevated levels of WT1 transcripts in bone marrow harvests are associated with a high relapse risk in patients autografted for acute myeloid leukaemia. Bone Marrow Transplant 2005; 36: 67–70.

    Article  CAS  PubMed  Google Scholar 

  13. Tamaki H, Ogawa H, Ohyashiki K, Ohyashiki JH, Iwama H, Inoue K et al. The Wilms' tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 1999; 13: 393–399.

    Article  CAS  PubMed  Google Scholar 

  14. Bader P, Niemeyer C, Weber G, Coliva T, Rossi V, Kreyenberg H et al. WT1 gene expression: useful marker for minimal residual disease in childhood myelodysplastic syndromes and juvenile myelo-monocytic leukemia? Eur J Haematol 2004; 73: 25–28.

    Article  CAS  PubMed  Google Scholar 

  15. Cilloni D, Gottardi E, Messa F, Fava M, Scaravaglio P, Bertini M et al. Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol 2003; 21: 1988–1995.

    Article  CAS  PubMed  Google Scholar 

  16. Hamalainen MM, Kairisto V, Juvonen V, Johansson J, Auren J, Kohonen K et al. Wilms tumour gene 1 overexpression in bone marrow as a marker for minimal residual disease in acute myeloid leukaemia. Eur J Haematol 2008; 80: 201–207.

    Article  PubMed  Google Scholar 

  17. Boublikova L, Kalinova M, Ryan J, Quinn F, O'Marcaigh A, Smith O et al. Wilms' tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring. Leukemia 2006; 20: 254–263.

    Article  CAS  PubMed  Google Scholar 

  18. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, Balgobind BV, Arentsen-Peters ST, Alders M et al. Clinical relevance of Wilms' tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 2009, January (e-pub ahead of print).

  19. Paschka P, Marcucci G, Ruppert AS, Whitman SP, Mrozek K, Maharry K et al. Wilms Tumor 1 Gene Mutations Independently Predict Poor Outcome in Adults With Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J Clin Oncol 2008; 26: 4595–4602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nyvold CG, Stentoft J, Braendstrup K, Melsvik D, Moestrup SK, Juhl-Christensen C et al. Wilms' tumor 1 mutation accumulated during therapy in acute myeloid leukemia: biological and clinical implications. Leukemia 2006; 20: 2051–2054.

    Article  CAS  PubMed  Google Scholar 

  21. Summers K, Stevens J, Kakkas I, Smith M, Smith LL, Macdougall F et al. Wilms' tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML. Leukemia 2007; 21: 550–551.

    Article  CAS  PubMed  Google Scholar 

  22. Virappane P, Gale R, Hills R, Kakkas I, Summers K, Stevens J et al. Mutation of the Wilms' Tumor 1 Gene Is a Poor Prognostic Factor Associated With Chemotherapy Resistance in Normal Karyotype Acute Myeloid Leukemia: The United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 2008; 26: 5429–5435.

    Article  CAS  PubMed  Google Scholar 

  23. Gaidzik V, Dohner K . Prognostic implications of gene mutations in acute myeloid leukemia with normal cytogenetics. Semin Oncol 2008; 35: 346–355.

    Article  CAS  PubMed  Google Scholar 

  24. Pollard JA, Zeng R, Ho P, Alonzo T, Gerbing R, Stirewalt D et al. Prevalence and prognostic implications of WT1 mutations in pediatric AML Â: Report from Children's Oncology Group. Blood (ASH annual meeting abstracts) 2008; 112: 58.

    Google Scholar 

  25. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  26. Beillard E, Pallisgaard N, van der Velden VHJ, Bi W, Dee R, van der Schoot E et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe Against Cancer program. Leukemia 2003; 17: 2474–2486.

    Article  CAS  PubMed  Google Scholar 

  27. Gabert J, Beillard E, van der Velden V, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  PubMed  Google Scholar 

  28. van Dongen JJM, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease - Report of the BIOMED-1 Concerted Action: Investigation of Minimal Residual Disease in Acute Leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  PubMed  Google Scholar 

  29. Kreuzer KA, Saborowski A, Lupberger J, Appelt C, Na IK, le Coutre P et al. Fluorescent 5′-exonuclease assay for the absolute quantification of Wilms' tumour gene (WT1) mRNA: implications for monitoring human leukaemias. Br J Haematol 2001; 114: 313–318.

    Article  CAS  PubMed  Google Scholar 

  30. Pallisgaard N, Hokland P, Bi WL, van der Schoot E, Watzinger F, Lion T et al. Selection of reference genes for the European standardization and quality control program of real-time quantitative RT-PCR analysis of fusion gene transcripts for minimal residual disease follow-up in leukemia patients. Blood 2001; 98: 192B.

    Google Scholar 

  31. Beillard E, Pradel V, Aerts J, Barbany G, Bi W, Cave H et al. European standardization and quality control program of real time quantitative RT-PCR analysis of fusion gene transcripts for minimal residual disease detection in leukemia patients. Leukemia 2001; 15: 2006–2007.

    Google Scholar 

  32. Gottardi E, Cilloni D, Daly S, Green S, Pallisgaard N, Hokland P et al. Standardization of WT1 mRNA quantification for minimal residual disease (MRD) monitoring in acute leukemia patients: a European LeukemiaNet concerted action. Blood (ASH annual meeting abstracts) 2005; 106: 3295.

    Google Scholar 

  33. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  PubMed  Google Scholar 

  34. The R Foundation for Statistical Computing c/o Institut für Statistik und Wahrscheinlichkeitstheorie der Technischen Universität Wien. R, a language and environment for statistical computing and graphics. University of Vienna, Austria, 2003.

  35. Steinbach D, Debatin KM . What do we mean by sensitivity when we talk about detecting minimal residual disease? Leukemia 2008; 22: 1638–1639.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the ‘Deutsche José Carreras Leukämie Stiftung e.V. (DJCLS R04/09)’, Munich, Germany (PB, HK, AMW), by the ‘Research Project of the Czech Ministry of Education (No. 0021620813)’, Prague, Czech Republic (JT, MK), by the ‘Fondazione Tettamanti, Fondazione Cariplo and AIRC’, Italy (AB, GC) and by the ‘KOCR Foundation’, Rotterdam, The Netherlands (IHIMH, CMZ). We thank Vida Meyer (Frankfurt), Nadine Pfaffendorf (Jena), Vincenzo Rossi (Monza) and Patricia Hoogeveen (Rotterdam) for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to A M Willasch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willasch, A., Gruhn, B., Coliva, T. et al. Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. Leukemia 23, 1472–1479 (2009). https://doi.org/10.1038/leu.2009.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.51

Keywords

This article is cited by

Search

Quick links