Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Heritable T-cell malignancy models established in a zebrafish phenotypic screen

Abstract

T-cell neoplasias are common in pediatric oncology, and include acute lymphoblastic leukemia (T-ALL) and lymphoblastic lymphoma (T-LBL). These cancers have worse prognoses than their B-cell counterparts, and their treatments carry significant morbidity. Although many pediatric malignancies have characteristic translocations, most T-lymphocyte-derived diseases lack cytogenetic hallmarks. Lacking these informative lesions, insight into their molecular pathogenesis is less complete. Although dysregulation of the NOTCH1 pathway occurs in a substantial fraction of cases, many other genetic lesions of T-cell malignancy have not yet been determined. To address this deficiency, we pioneered a phenotype-driven forward-genetic screen in zebrafish (Danio rerio). Using transgenic fish with T-lymphocyte-specific expression of enhanced green fluorescent protein (EGFP), we performed chemical mutagenesis, screened animals for GFP+ tumors, and identified multiple lines with a heritable predisposition to T-cell malignancy. In each line, the patterns of infiltration and morphological appearance resembled human T-ALL and T-LBL. T-cell receptor analyses confirmed their clonality. Malignancies were transplantable and contained leukemia-initiating cells, like their human correlates. In summary, we have identified multiple zebrafish mutants that recapitulate human T-cell neoplasia and show heritable transmission. These vertebrate models provide new genetic platforms for the study of these important human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Silverman LB, Sallan SE . Newly diagnosed childhood acute lymphoblastic leukemia: update on prognostic factors and treatment. Curr Opin Hematol 2003; 10: 290–296.

    Article  PubMed  Google Scholar 

  2. Gaynon PS, Trigg ME, Heerema NA, Sensel MG, Sather HN, Hammond GD et al. Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia 2000; 14: 2223–2233.

    Article  CAS  PubMed  Google Scholar 

  3. Thiel E, Kranz BR, Raghavachar A, Bartram CR, Loffler H, Messerer D et al. Prethymic phenotype and genotype of pre-T (CD7+/ER-)-cell leukemia and its clinical significance within adult acute lymphoblastic leukemia. Blood 1989; 73: 1247–1258.

    CAS  PubMed  Google Scholar 

  4. Goldberg JM, Silverman LB, Levy DE, Dalton VK, Gelber RD, Lehmann L et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol 2003; 21: 3616–3622.

    Article  PubMed  Google Scholar 

  5. Pui CH . Recent advances in the biology and treatment of childhood acute lymphoblastic leukemia. Curr Opin Hematol 1998; 5: 292–301.

    Article  CAS  PubMed  Google Scholar 

  6. Larson RA, Dodge RK, Linker CA, Stone RM, Powell BL, Lee EJ et al. A randomized controlled trial of filgrastim during remission induction and consolidation chemotherapy for adults with acute lymphoblastic leukemia: CALGB study 9111. Blood 1998; 92: 1556–1564.

    CAS  PubMed  Google Scholar 

  7. Takeuchi J, Kyo T, Naito K, Sao H, Takahashi M, Miyawaki S et al. Induction therapy by frequent administration of doxorubicin with four other drugs, followed by intensive consolidation and maintenance therapy for adult acute lymphoblastic leukemia: the JALSG-ALL93 study. Leukemia 2002; 16: 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  8. Gilliland DG . Hematologic malignancies. Curr Opin Hematol 2001; 8: 189–191.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  10. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  11. Armstrong SA, Look AT . Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005; 23: 6306–6315.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrando AA, Look AT . Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol 2000; 37: 381–395.

    Article  CAS  PubMed  Google Scholar 

  13. Harrison CJ, Foroni L . Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Rev Clin Exp Hematol 2002; 6: 91–113; discussion 200–2.

    Article  CAS  PubMed  Google Scholar 

  14. Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A . Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20: 1496–1510.

    Article  CAS  PubMed  Google Scholar 

  15. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  16. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006; 103: 18261–18266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gunz FW, Gunz JP, Veale AM, Chapman CJ, Houston IB . Familial leukaemia: a study of 909 families. Scand J Haematol 1975; 15: 117–131.

    Article  CAS  PubMed  Google Scholar 

  18. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH . Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 1994; 86: 1600–1608.

    Article  CAS  PubMed  Google Scholar 

  19. Horwitz M . The genetics of familial leukemia. Leukemia 1997; 11: 1347–1359.

    Article  CAS  PubMed  Google Scholar 

  20. Segel GB, Lichtman MA . Familial (inherited) leukemia, lymphoma, and myeloma: an overview. Blood Cells Mol Dis 2004; 32: 246–261.

    Article  PubMed  Google Scholar 

  21. Benson KF, Horwitz M . Familial leukemia. Best Pract Res Clin Haematol 2006; 19: 269–279.

    Article  CAS  PubMed  Google Scholar 

  22. Amatruda JF, Zon LI . Dissecting hematopoiesis and disease using the zebrafish. Dev Biol 1999; 216: 1–15.

    Article  CAS  PubMed  Google Scholar 

  23. Trede NS, Langenau DM, Traver D, Look AT, Zon LI . The use of zebrafish to understand immunity. Immunity 2004; 20: 367–379.

    Article  CAS  PubMed  Google Scholar 

  24. Meeker ND, Trede NS . Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 2008; 32: 745–757.

    Article  CAS  PubMed  Google Scholar 

  25. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 2003; 299: 887–890.

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Jette C, Kanki JP, Aster JC, Look AT, Griffin JD . NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 2007; 21: 462–471.

    Article  PubMed  Google Scholar 

  27. Solnica-Krezel L, Schier AF, Driever W . Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 1994; 136: 1401–1420.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Streisinger G, Walker C, Dower N, Knauber D, Singer F . Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981; 291: 293–296.

    Article  CAS  PubMed  Google Scholar 

  29. Gestl EE, Kauffman EJ, Moore JL, Cheng KC . New conditions for generation of gynogenetic half-tetrad embryos in the zebrafish (Danio rerio). J Hered 1997; 88: 76–79.

    Article  Google Scholar 

  30. Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D . Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 2007; 134: 4147–4156.

    Article  CAS  PubMed  Google Scholar 

  31. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI . Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 2003; 4: 1238–1246.

    Article  CAS  PubMed  Google Scholar 

  32. Langenau DM, Ferrando AA, Traver D, Kutok JL, Hezel JP, Kanki JP et al. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci USA 2004; 101: 7369–7374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996; 123: 1–36.

    CAS  PubMed  Google Scholar 

  34. Geisler R, Rauch GJ, Geiger-Rudolph S, Albrecht A, van Bebber F, Berger A et al. Large-scale mapping of mutations affecting zebrafish development. BMC Genomics 2007; 8: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Trede NS, Ota T, Kawasaki H, Paw BH, Katz T, Demarest B et al. Zebrafish mutants with disrupted early T-cell and thymus development identified in early pressure screen. Dev Dyn 2008; 237: 2575–2584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lutzner M, Edelson R, Schein P, Green I, Kirkpatrick C, Ahmed A . Cutaneous T-cell lymphomas: the Sezary syndrome, mycosis fungoides, and related disorders. Ann Intern Med 1975; 83: 534–552.

    Article  CAS  PubMed  Google Scholar 

  37. Hicks J, Mierau GW . The spectrum of pediatric tumors in infancy, childhood, and adolescence: a comprehensive review with emphasis on special techniques in diagnosis. Ultrastruct Pathol 2005; 29: 175–202.

    Article  PubMed  Google Scholar 

  38. Borowitz MJ, Chan JKC . T-lymphoblastic leukaemia/lymphoma. In: Swerdlow SH, Campos E, Harris NL, Jaffe EF, Pileri SA, Stein H, Thiele J, Vardiman JW (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2008, pp 176–178.

    Google Scholar 

  39. Fay D, Spencer A . Genetic mapping and manipulation: chapter 8—dominant mutations. In: Community TCER (ed). Wormbook: Wormbook; February 17, 2006.

  40. Zhuravleva J, Paggetti J, Martin L, Hammann A, Solary E, Bastie JN et al. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br J Haematol 2008; 143: 378–382.

    Article  CAS  PubMed  Google Scholar 

  41. Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD . TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2006; 103: 15166–15171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scott RH, Homfray T, Huxter NL, Mitton SG, Nash R, Potter MN et al. Familial T-cell non-Hodgkin lymphoma caused by biallelic MSH2 mutations. J Med Genet 2007; 44: e83.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Langenau DM, Jette C, Berghmans S, Palomero T, Kanki JP, Kutok JL et al. Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 2005; 105: 3278–3285.

    Article  CAS  PubMed  Google Scholar 

  44. Bernt KM, Armstrong SA . Leukemia stem cells and human acute lymphoblastic leukemia. Semin Hematol 2009; 46: 33–38.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Traver D, Winzeler A, Stern HM, Mayhall EA, Langenau DM, Kutok JL et al. Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 2004; 104: 1298–1305.

    Article  CAS  PubMed  Google Scholar 

  46. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR et al. Retinal stem cells in the adult mammalian eye. Science 2000; 287: 2032–2036.

    Article  CAS  PubMed  Google Scholar 

  47. Langenau DM, Keefe MD, Storer NY, Jette CA, Smith AC, Ceol CJ et al. Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish. Oncogene 2008; 27: 4242–4248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Eric Konnick and Lauren Shih for superb technical contributions to this work, Dr Kenneth Boucher for expert statistical analysis and ARUP Institute for histology and immunophenotyping. We also thank Drs Stephen Lessnick, John Parant and Joshua Schiffman for critical appraisal of the paper. JKF was supported by NICHD award K08-HD53350; NM was supported by NICHD award K12-HD001410 and an Alex's Lemonade Stand Young Investigator award; JKF and NM were both supported by the Children's Health Research Center at the University of Utah and by Primary Children's Medical Center Foundation Grants; LR was supported by NIDDK award T32-DK007115; SAH was supported by an NIH Cancer Research Training Grant and an American Cancer Society Fellowship award PF-08-105-01-LIB; NST was supported by NIAID award R21-AI079784 and the Huntsman Cancer Foundation; Huntsman Cancer Institute core facilities supported by Grant P30-CA042014 also contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J K Frazer or N S Trede.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frazer, J., Meeker, N., Rudner, L. et al. Heritable T-cell malignancy models established in a zebrafish phenotypic screen. Leukemia 23, 1825–1835 (2009). https://doi.org/10.1038/leu.2009.116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.116

Keywords

This article is cited by

Search

Quick links