Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Atypical 11q deletions identified by array CGH may be missed by FISH panels for prognostic markers in chronic lymphocytic leukemia

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  Google Scholar 

  2. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia (IWCLL) updating the National Cancer Institute Working Group (NCI-WG) 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  Google Scholar 

  3. Zenz T, Döhner H, Stilgenbauer S . Genetics and risk-stratified approach to therapy in chronic lymphocytic leukemia. Best Pract Res Clin Haematol 2007; 20: 439–453.

    Article  CAS  Google Scholar 

  4. Glassman AB, Hayes KJ . The value of fluorescence in situ hybridization in the diagnosis and prognosis of chronic lymphocytic leukemia. Cancer Genet Cytogenet 2005; 158: 88–91.

    Article  CAS  Google Scholar 

  5. Juliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G, Mackie MJ et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 1990; 323: 720–724.

    Article  CAS  Google Scholar 

  6. Kay NE, O’Brien SM, Pettit AR, Stilgenbauer S . The role of prognostic factors in assessing ‘high-risk’ subgroups of patients with chronic lymphocytic leukemia. Leukemia 2007; 21: 1885–1891.

    Article  CAS  Google Scholar 

  7. Dickinson JD, Smith LM, Sanger WG, Zhou G, Townley P, Lynch JC et al. Unique gene expression and clinical characteristics with the 11q23 deletion in chronic lymphocytic leukemia. Br J Haematol 2005; 128: 460–461.

    Article  CAS  Google Scholar 

  8. Zent CS, Call TG, Hogan WJ, Shanafelt TD, Kay NE . Update on risk-stratified management for chronic lymphocytic leukemia. Leuk Lymphoma 2006; 47: 1738–1746.

    Article  Google Scholar 

  9. Schwaenen C, Nessling M, Wessendorf S, Salvi T, Wrobel G, Radlwimmer B et al. Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA 2004; 101: 1039–1044.

    Article  CAS  Google Scholar 

  10. Patel A, Kang S-H, Lennon PA, Li YF, Rao PN, Abruzzo L et al. Validation of a targeted DNA microarray for clinical evaluation of recurrent abnormalities in chronic lymphocytic leukemia. Am J Hematol 2008; 83: 540–546.

    Article  CAS  Google Scholar 

  11. Gunn SR, Mohammed MS, Mellink CHM, Abruzzo LV, Robetorye RS . The HemeScan test for genomic prognostic marker assessment in chronic lymphocytic leukemia. Expert Opin Med Diagn 2008; 2: 731–740.

    Article  CAS  Google Scholar 

  12. Gunn SR, Mohammed MS, Gorre ME, Cotter PD, Kim J, Bahler DW et al. Whole-genome scanning by array comparative genomic hybridization as a clinical tool for risk assessment in chronic lymphocytic leukemia. J Mol Diagn 2008; 10: 442–451.

    Article  CAS  Google Scholar 

  13. Sargent R, Jones D, Abruzzo LV, Yao H, Bonderover J, Cisneros M et al. Customized oligonucleotide array-based comparative genomic hybridization as a clinical assay for genomic profiling of chronic lymphocytic leukemia. J Mol Diagn 2009; 11: 25–34.

    Article  CAS  Google Scholar 

  14. Higgins RA, Gunn SR, Robetorye RS . Clinical application of array-based comparative genomic hybridization arrays for the identification of prognostically important genetic alterations in chronic lymphocytic leukemia. Mol Diagn Ther 2008; 12: 271–280.

    Article  Google Scholar 

  15. Stilgenbauer S, Liebisch P, James MR, Schroder M, Schlegelberger B, Fischer K et al. Molecular cytogenetic delineation of a novel critical genomic region in chromosome band 11q22.3-q23.1 in lymphoproliferative disorders. Proc Natl Acad Sci USA 1996; 93: 11837–11841.

    Article  CAS  Google Scholar 

  16. Eclache V, Caulet-Maugendre S, Poirel HA, Djemai M, Robert J, Lejeune F et al. Cryptic deletion involving the ATM locus at 11q22.3-q23.1 in B-cell chronic lymphocytic leukemia and related disorders. Cancer Genet Cytogenet 2004; 152: 72–76.

    Article  CAS  Google Scholar 

  17. Stilgenbauer S, Sander S, Bullinger L, Benner A, Leupolt E, Winkler D et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberration associated with unmutated VH, resistance to therapy and short survival. Haematology 2007; 92: 1242–1245.

    Article  Google Scholar 

  18. Vallee RB, Varma D, Dujardin DL . ZW10 function in mitotic checkpoint control, dynein targeting and membrane trafficking: is dynein the unifying theme? Cell Cycle 2006; 5: 2447–2451.

    Article  CAS  Google Scholar 

  19. Gao K, Lockwood WW, Li J, Lam W, Li G . Genomic analyses identify gene candidates for acquired irinotecan resistance in melanoma cells. Int J Oncol 2008; 32: 1343–1349.

    CAS  PubMed  Google Scholar 

  20. Shaknovich R, Yeyati PL, Ivins S, Melnick A, Lempert C, Waxman S et al. The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol Cell Biol 1998; 18: 5533–5545.

    Article  CAS  Google Scholar 

  21. Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S et al. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 1999; 18: 925–934.

    Article  CAS  Google Scholar 

  22. McConnell MJ, Chevallier N, Berkofsky-Fessler W, Giltnane JM, Malani RB, Staudt LM et al. Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell Biol 2003; 23: 9375–9388.

    Article  CAS  Google Scholar 

  23. Nowacki S, Skowron M, Oberthuer A, Fagin A, Voth H, Brors B et al. Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma. Oncogene 2008; 27: 3329–3338.

    Article  CAS  Google Scholar 

  24. Lung HL, Cheung AK, Xie D, Cheng Y, Kwong FM, Murakami Y et al. TSLC1 is a tumor suppressor gene associated with metastasis in nasopharyngeal carcinoma. Cancer Res 2006; 66: 9385–9392.

    Article  CAS  Google Scholar 

  25. Fukuhara H, Kuramochi M, Fukami T, Kasahara K, Furuhata M, Nobukuni T et al. Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer. Jpn J Cancer Res 2002; 93: 605–609.

    Article  CAS  Google Scholar 

  26. Heller G, Geradts J, Ziegler B, Newsham I, Filipits M, Markis-Ritzinger EM et al. Downregulation of TSLC1 and DAL-1 expression occurs frequently in breast cancer. Breast Cancer Res Treat 2007; 103: 283–291.

    Article  CAS  Google Scholar 

  27. Goto A, Niki T, Chi-Pin L, Matsubara D, Murakami Y, Funata N et al. Loss of TSLC1 expression in lung adenocarcinoma: relationships with histological subtypes, sex and prognostic significance. Cancer Sci 2005; 96: 480–486.

    Article  CAS  Google Scholar 

  28. Houshmandi SS, Surace EI, Zhang HB, Fuller GN, Gutmann DH . Tumor suppressor in lung cancer-1 (TSLC1) functions as a glioma tumor suppressor. Neurology 2006; 67: 1863–1866.

    Article  CAS  Google Scholar 

  29. Jansen M, Fukushima N, Rosty C, Walter K, Altink R, Heek TV et al. Aberrant methylation of the 5’ CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther 2002; 1: 293–296.

    Article  CAS  Google Scholar 

  30. Allinen M, Peri L, Kujala S, Lahti-Domenici J, Outila K, Karppinen SM et al. Analysis of 11q21-24 loss of heterozygosity candidate target genes in breast cancer: indications of TSLC1 promoter hypermethylation. Genes Chromosomes Cancer 2002; 34: 384–389.

    Article  CAS  Google Scholar 

  31. Ito T, Shimada Y, Hashimoto Y, Kaganoi J, Kan T, Watanabe G et al. Involvement of TSLC1 in progression of esophageal squamous cell carcinoma. Cancer Res 2003; 63: 6320–6326.

    CAS  PubMed  Google Scholar 

  32. Honda T, Tamura G, Waki T, Jin Z, Sato K, Motoyama T et al. Hypermethylation of the TSLC1 gene promoter in primary gastric cancers and gastric cancer cell lines. Jpn J Cancer Res 2002; 93: 857–860.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SRG, ELE, MEG and MSM are employees of Combimatrix Molecular Diagnostics. RSR is a clinical consultant for Combimatrix Molecular Diagnostics. MKH is an employee of Clarient Diagnostics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R S Robetorye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunn, S., Hibbard, M., Ismail, S. et al. Atypical 11q deletions identified by array CGH may be missed by FISH panels for prognostic markers in chronic lymphocytic leukemia. Leukemia 23, 1011–1017 (2009). https://doi.org/10.1038/leu.2008.393

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.393

This article is cited by

Search

Quick links