Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Experimental models of arteriogenesis: differences and implications

Abstract

Cardiovascular and cerebrovascular disease represent the two most common causes of mortality and morbidity in western countries, and the treatment for these is generally by the mechanical restoration of blood flow in the affected tissues. Stimulation of collateral artery growth (arteriogenesis) provides a potential alternative option for the treatment of patients suffering from occlusive artery disease. Therefore, researchers have established several angiogenesis and arteriogenesis animal models to investigate basic mechanisms and pharmacological modulation of collateral artery growth. The authors highlight the most important aspects of vascular growth, discuss different methods and techniques for examining the process, and review the advantages and disadvantages associated with the animal models available for studying this phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Angiogenesis and arteriogenesis.
Figure 2: Post-mortem angiograms of rabbit hindlimbs.
Figure 3: Laser Doppler flow imaging in a murine hindlimb model.
Figure 4: Selecting the right model for arteriogenic studies.

Similar content being viewed by others

References

  1. Risau, W. Mechanisms of angiogenesis. Nature 386(6626), 671–674 (1997).

    Article  Google Scholar 

  2. Risau, W. & Flamme, I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91 (1995).

    Article  CAS  Google Scholar 

  3. Flamme, I., Frolich, T. & Risau, W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J. Cell. Physiol. 173(2), 206–210 (1997).

    Article  Google Scholar 

  4. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302), 964–967 (1997).

    Article  CAS  Google Scholar 

  5. Urbich, C. & Dimmeler, S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 95(4), 343–353 (2004).

    Article  Google Scholar 

  6. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6(4), 389–395 (2000).

    Article  Google Scholar 

  7. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21), 1182–1186 (1971).

    Google Scholar 

  8. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175(3), 409–416 (1972).

    Article  Google Scholar 

  9. Folkman, J. Tumor angiogenesis: a possible control point in tumor growth. Ann. Intern. Med. 82(1), 96–100. (1975).

    Article  Google Scholar 

  10. Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394(6692), 485–490 (1998).

    Article  Google Scholar 

  11. Henry, T. et al. Double blind, placebo controlled trial of recombinant human vascular endothelial growth factor: the VIVA trial. J. Am. Coll. Cardiol. 33(2: Supp A), 384 (1999).

    Google Scholar 

  12. Lower, R. Tractus de Corde (Elsevier, Amsterdam, 1669).

    Google Scholar 

  13. Longland, C.J. The collateral circulation of the limb. Ann. Roy. Coll. Surg. Engl. 13(3), 161–164 (1953).

    Google Scholar 

  14. Ito, W.D. et al. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am. J. Physiol. 273 (3 Pt 2), H1255–H1265 (1997).

    CAS  PubMed  Google Scholar 

  15. Deindl, E. et al. Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ. Res. 89(9), 779–786 (2001).

    Article  Google Scholar 

  16. Hoefer, I.E. et al. Arteriogenesis proceeds via ICAM-1/Mac-1- mediated mechanisms. Circ. Res. 94(9), 1179–1185 (2004).

    Article  Google Scholar 

  17. Scholz, D. et al. Expression of adhesion molecules is specific and time-dependent in cytokine-stimulated endothelial cells in culture. Cell Tissue Res. 284(3), 415–423 (1996).

    Article  Google Scholar 

  18. Scholz, D. et al. Ultrastructure and molecular histology of rabbit hindlimb collateral artery growth (arteriogenesis). Virchows Arch. 436(3), 257–270 (2000).

    Article  Google Scholar 

  19. van Royen, N. et al. CD44 regulates arteriogenesis in mice and is differentially expressed in patients with poor and good collateralization. Circulation 109(13), 1647–1652 (2004).

    Article  Google Scholar 

  20. Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101(1), 40–50 (1998).

    Article  Google Scholar 

  21. Ley, K., Allietta, M., Bullard, D.C. & Morgan, S. Importance of E-selectin for firm leukocyte adhesion in vivo. Circ. Res. 83(3), 287–294 (1998).

    Article  Google Scholar 

  22. Kukreti, S., Konstantopoulos, K., Smith, C.W. & McIntire, L.V. Molecular mechanisms of monocyte adhesion to interleukin-1β-stimulated endothelial cells under physiologic flow conditions. Blood 89(11), 4104–4111 (1997).

    Google Scholar 

  23. Languino, L.R. et al. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc. Natl. Acad. Sci. USA 92(5), 1505–1509 (1995).

    Article  Google Scholar 

  24. Morigi, M. et al. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood 85(7), 1696–1703 (1995).

    Google Scholar 

  25. Cai, W. et al. Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis. J. Mol. Cell. Cardiol. 32(6), 997–1011 (2000).

    Article  Google Scholar 

  26. Cai, W.J. et al. Remodeling of the adventitia during coronary arteriogenesis. Am. J. Physiol. Heart Circ. Physiol. 284(1), H31–H40 (2003).

    Article  Google Scholar 

  27. Scholz, D. et al. Early events in adaptive arteriogenesis. (Abstr.) J. Mol. Cell. Cardiol. 30(Suppl), A127 (1998).

    Google Scholar 

  28. Hoefer, I., van Royen, N., Buschmann, I., Piek, J. & Schaper, W. Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovasc. Res. 49(3), 609–617 (2001).

    Article  Google Scholar 

  29. Pipp, F. et al. Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler. Thromb. Vasc. Biol. 24(9), 1664–1668 (2004).

    Article  Google Scholar 

  30. Unger, E.F. Experimental evaluation of coronary collateral development. Cardiovasc. Res. 49(3), 497–506 (2001).

    Article  Google Scholar 

  31. Rentrop, K.P., Feit, F., Sherman, W. & Thornton, J.C. Serial angiographic assessment of coronary artery obstruction and collateral flow in acute myocardial infarction. Report from the second Mount Sinai-New York University Reperfusion Trial. Circulation 80(5), 1166–1175 (1989).

    Article  Google Scholar 

  32. Fuchs, S., Shou, M., Baffour, R., Epstein, S.E. & Kornowski, R. Lack of correlation between angiographic grading of collateral and myocardial perfusion and function: implications for the assessment of angiogenic response. Coron. Artery Dis. 12(3), 173–178 (2001).

    Article  Google Scholar 

  33. Heil, M. et al. Blood monocyte concentration is critical for the enhancement of collateral artery growth. Am. J. Physiol. Heart Circ. Physiol. 28(6), H2411–H2419 (2002).

    Article  Google Scholar 

  34. Rivard, A. et al. Age-dependent impairment of angiogenesis. Circulation 99(1), 111–120 (1999).

    Article  Google Scholar 

  35. Silvestre, J.S. et al. Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb. Circ. Res. 90(10), 1072–1079 (2002).

    Article  Google Scholar 

  36. Schirmer, S.H. et al. Differential effects of MCP-1 and leptin on collateral flow and arteriogenesis. Cardiovasc. Res. 64(2), 356–364 (2004).

    Article  Google Scholar 

  37. Wright, C.E., Angus, J.A. & Korner, P.I. Vascular amplifier properties in renovascular hypertension in conscious rabbits. Hypertension 9(2), 122–131 (1987).

    Article  Google Scholar 

  38. Buschmann, I.R. et al. Invasive and non-invasive evaluation of spontaneous arteriogenesis in a novel porcine model for peripheral arterial obstructive disease. Atherosclerosis 167(1), 33–43 (2003).

    Article  Google Scholar 

  39. Voskuil, M. et al. Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am. J. Physiol. Heart Circ. Physiol. 284(4), H1422–H1428 (2003).

    Article  Google Scholar 

  40. Chien, G.L., Anselone, C.G., Davis, R.F. & Van Winkle, D.M. Fluorescent vs. radioactive microsphere measurement of regional myocardial blood flow. Cardiovasc. Res. 30(3), 405–412 (1995).

    Article  Google Scholar 

  41. Van Oosterhout, M.F., Prinzen, F.W., Sakurada, S., Glenny, R.W. & Hales, J.R.S. Fluorescent microspheres are superior to radioactive microspheres in chronic blood flow measurements. Am. J. Physiol. 275 (1 Pt 2), H110–H115 (1998).

    CAS  PubMed  Google Scholar 

  42. Buckberg, G. Studies of regional coronary flow using radioactive microspheres. Ann. Thorac. Surg. 20(1), 46–51 (1975).

    Article  Google Scholar 

  43. Bassingthwaighte, J.B. et al. Validity of microsphere depositions for regional myocardial flows. Am. J. Physiol. 253 (1 Pt 2), H184–H193 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Glenny, R.W. Manual for Using Fluorescent Microspheres to Measure Regional Organ Perfusion (Fluorescent Microsphere Resource Center, Seattle, WA, 1996).

  45. Yang, H.T., Ogilvie, R.W. & Terjung, R.L. Heparin increases exercise-induced collateral blood flow in rats with femoral artery ligation. Circ. Res. 76(3), 448–456 (1995).

    Article  Google Scholar 

  46. Yang, H.T., Laughlin, M.H. & Terjung, R.L. Prior exercise training increases collateral-dependent blood flow in rats after acute femoral artery occlusion. Am. J. Physiol. Heart Circ. Physiol. 279(4), H1890–H1897 (2000).

    Article  Google Scholar 

  47. Prior, B.M., Lloyd, P.G., Yang, H.T. & Terjung, R.L. Exercise-induced vascular remodeling. Exerc. Sport Sci. Rev. 31(1), 26–33 (2003).

    Article  Google Scholar 

  48. Scholz, D. et al. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J. Mol. Cell. Cardiol. 34(7), 775–787 (2002).

    Article  Google Scholar 

  49. Heil, M. et al. Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ. Res. 94(5), 671–677 (2004).

    Article  Google Scholar 

  50. Horvath, K.A. et al. Myocardial functional recovery after fibroblast growth factor 2 gene therapy as assessed by echocardiography and magnetic resonance imaging. Ann. Thorac. Surg. 74(2), 481–486; discussion 487 (2002).

    Article  Google Scholar 

  51. Wagner, S., Helisch, A., Bachmann, G. & Schaper, W. Time-of-flight quantitative measurements of blood flow in mouse hindlimbs. J. Magn. Reson. Imaging 19(4), 468–474 (2004).

    Article  Google Scholar 

  52. Wagner, S., Helisch, A., Ziegelhoeffer, T., Bachmann, G. & Schaper, W. Magnetic resonance angiography of collateral vessels in a murine femoral artery ligation model. NMR Biomed. 17(1), 21–27 (2004).

    Article  Google Scholar 

  53. Pipp, F. et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ. Res. 92(4), 378–385 (2003).

    Article  Google Scholar 

  54. van Royen, N. et al. Local monocyte chemoattractant protein-1 therapy increases collateral artery formation in apolipoprotein E-deficient mice but induces systemic monocytic CD11b expression, neointimal formation, and plaque progression. Circ. Res. 92(2), 218–225 (2003).

    Article  Google Scholar 

  55. Scholz, D. et al. Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor (PlGF)−/− mice. J. Mol. Cell. Cardiol. 35(2), 177–184 (2003).

    Article  Google Scholar 

  56. Ito, W.D. et al. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ. Res. 80(6), 829–837 (1997).

    Article  Google Scholar 

  57. van Royen, N. et al. Exogenous application of transforming growth factor-β1 stimulates arteriogenesis in the peripheral circulation. FASEB J. 16(3), 432–434 (2002).

    Article  Google Scholar 

  58. Grundmann, S. et al. Anti-tumor necrosis factor-α therapies attenuate adaptive arteriogenesis in the rabbit. Am. J. Physiol. Heart Circ. Physiol. 289(4), H1497–H1505 (2005).

    Article  Google Scholar 

  59. Kopelman, D., Hirshhorn, G. & Hashmonai, M. Prevention of limb loss in critical ischaemia by arterialization of the superficial venous system: an experimental study in dogs. Cardiovasc. Surg. 6(4), 384–388 (1998).

    Article  Google Scholar 

  60. Rakue, H. et al. Low-dose basic fibroblast growth factor and vascular endothelial growth factor for angiogenesis in canine acute hindlimb insufficiency. Jpn. Circ. J. 62(12), 933–939 (1998).

    Article  Google Scholar 

  61. Herzog, S., Sager, H., Khmelevski, E., Deylig, A. & Ito, W.D. Collateral arteries grow from preexisting anastomoses in the rat hindlimb. Am. J. Physiol. Heart Circ. Physiol. 283(5), H2012–H2020 (2002).

    Article  Google Scholar 

  62. Yang, H.T., Deschenes, M.R., Ogilvie, R.W. & Terjung, R.L. Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ. Res. 79(1), 62–69 (1996).

    Article  Google Scholar 

  63. Kondo, T. & Watanabe, Y. A heritable hyperlipemic rabbit [in Japanese]. Jikken Dobutsu. 24(3), 89–94 (1975).

    Google Scholar 

  64. Zhang, S.H., Reddick, R.L., Piedrahita, J.A. & Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081), 468–471 (1992).

    Article  Google Scholar 

  65. Plump, A.S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2), 343–353 (1992).

    Article  Google Scholar 

  66. van Royen, N. et al. Effects of local MCP-1 protein therapy on the development of the collateral circulation and atherosclerosis in Watanabe hyperlipidemic rabbits. Cardiovasc. Res. 57(1), 178–185 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imo E. Hoefer MD, PhD.

Ethics declarations

Competing interests

Hoefer and van Royen are shareholders of Perfusion Technologies GmbH, Freiburg, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoefer, I., van Royen, N. & Jost, M. Experimental models of arteriogenesis: differences and implications. Lab Anim 35, 36–44 (2006). https://doi.org/10.1038/laban0206-36

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban0206-36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing