Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Using anesthetics and analgesics in experimental traumatic brain injury

Abstract

Valid modeling of traumatic brain injury (TBI) requires accurate replication of both the mechanical forces that cause the primary injury and the conditions that lead to secondary injuries observed in human patients. The use of animals in TBI research is justified by the lack of in vitro or computer models that can sufficiently replicate the complex pathological processes involved. Measures to reduce nociception and distress must be implemented, but the administration of anesthetics and analgesics can influence TBI outcomes, threatening the validity of the research. In this review, the authors present evidence for the interference of anesthetics and analgesics in the natural course of brain injury in animal models of TBI. They suggest that drugs should be selected for or excluded from experimental TBI protocols on the basis of IACUC-approved experimental objectives in order to protect animal welfare and preserve the validity of TBI models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Faul, M., Xu, L., Wald, M.M., Coronado, V. & Dellinger, A.M. Traumatic brain injury in the United States: national estimates of prevalence and incidence, 2002–2006. Inj. Prev. 16, A268 (2010).

    Article  Google Scholar 

  2. O'Connor, C.A., Cernak, I. & Vink, R. Interaction between anesthesia, gender, and functional outcome task following diffuse traumatic brain injury in rats. J. Neurotrauma 20, 533–541 (2003).

    Article  Google Scholar 

  3. Werner, C. & Engelhard, K. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 99, 4–9 (2007).

    Article  CAS  Google Scholar 

  4. Animal Welfare Act, 9 CFR, Part 2, Section 2.31d1i 2.31 (d)(1)(ii).

  5. USDA APHIS. Animal Care Resource Guide: Animal Care Policy Manual. Policies #11 & #12 (USDA, Beltsville, MD, 2011).

  6. Morrison, B., Saatman, K.E., Meaney, D.F. & McIntosh, T.K. In vitro central nervous system models of mechanically induced trauma: a review. J. Neurotrauma 15, 911–928 (1998).

    Article  Google Scholar 

  7. Geddes, D.M., LaPlaca, M.C. & Cargill, R.S. 2nd. Susceptibility of hippocampal neurons to mechanically induced injury. Exp. Neurol. 184, 420–427 (2003).

    Article  CAS  Google Scholar 

  8. Zhu, F. et al. Biomechanical responses of a pig head under blast loading: a computational simulation. Int. J. Numer. Method Biomed. Eng. 29, 392–407 (2013).

    Article  Google Scholar 

  9. Lamy, M., Baumgartner, D., Yoganandan, N., Stemper, B.D. & Willinger, R. Experimentally validated three-dimensional finite element model of the rat for mild traumatic brain injury. Med. Biol. Eng. Comput. 51, 353–365 (2013).

    Article  Google Scholar 

  10. Wakeland, W., Agbeko, R., Vinecore, K., Peters, M. & Goldstein, B. Assessing the prediction potential of an in silico computer model of intracranial pressure dynamics. Crit. Care Med. 37, 1079–1089 (2009).

    Article  Google Scholar 

  11. Povlishock, J.T., Hayes, R.L., Michel, M.E. & McIntosh, T.K. Workshop on animal models of traumatic brain injury. J. Neurotrauma 11, 723–735 (1994).

    Article  CAS  Google Scholar 

  12. Walker, W.C. Pain pathoetiology after TBI: neural and nonneural mechanisms. J. Head Trauma Rehabil. 19, 72–81 (2004).

    Article  Google Scholar 

  13. Nampiaparampil, D.E. Prevalence of chronic pain after traumatic brain injury: a systematic review. J. Am. Med. Assoc. 300, 711–719 (2008).

    Article  CAS  Google Scholar 

  14. Campagna, J.A., Miller, K.W. & Forman, S.A. Mechanisms of actions of inhaled anesthetics. N. Engl. J. Med. 348, 2110–2124 (2003).

    Article  CAS  Google Scholar 

  15. Franks, N.P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370–386 (2008).

    Article  CAS  Google Scholar 

  16. Eger, E.I. 2nd. The pharmacology of isoflurane. Br. J. Anaesth. 56, 71S–99S (1984).

    CAS  PubMed  Google Scholar 

  17. Antognini, J.F., Barter, L. & Carstens, E. Overview movement as an index of anesthetic depth in humans and experimental animals. Comp. Med. 55, 413–418 (2005).

    CAS  Google Scholar 

  18. Statler, K.D. et al. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res. 1076, 216–224 (2006).

    Article  CAS  Google Scholar 

  19. Statler, K.D. et al. Isoflurane improves long-term neurologic outcome versus fentanyl after traumatic brain injury in rats. J. Neurotrauma 17, 1179–1189 (2000).

    Article  CAS  Google Scholar 

  20. Statler, K.D. et al. Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. J. Neurotrauma 23, 97–108 (2006).

    Article  Google Scholar 

  21. Patel, P.M., Drummond, J.C., Cole, D.J. & Goskowicz, R.L. Isoflurane reduces ischemia-induced glutamate release in rats subjected to forebrain ischemia. Anesthesiology 82, 996–1003 (1995).

    Article  CAS  Google Scholar 

  22. Bickler, P.E., Buck, L.T. & Hansen, B.M. Effects of isoflurane and hypothermia on glutamate receptor-mediated calcium influx in brain slices. Anesthesiology 81, 1461–1469 (1994).

    Article  CAS  Google Scholar 

  23. Statler, K.D. Hyperglycolysis is exacerbated after traumatic brain injury with fentanyl vs. isoflurane anesthesia in rats. Brain Res. 994, 37–43 (2003).

    Article  CAS  Google Scholar 

  24. Hertle, D. et al. Influence of isoflurane on neuronal death and outcome in a rat model of traumatic brain injury. Acta. Neurochir. (suppl.) 114, 383–386 (2012).

    Article  Google Scholar 

  25. Yurdakoc, A., Gunday, I. & Memis¸, D. Effects of halothane, isoflurane, and sevoflurane on lipid peroxidation following experimental closed head trauma in rats. Acta Anaesthesiol. Scand. 52, 658–663 (2008).

    Article  CAS  Google Scholar 

  26. Asgari, S., Bergsneider, M., Hamilton, R., Vespa, P. & Hu, X. Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation. Neurocrit. Care 15, 55–62 (2011).

    Article  Google Scholar 

  27. Haubrich, C. et al. Short-term moderate hypocapnia augments detection of optimal cerebral perfusion pressure. J. Neurotrauma 28, 1133–1137 (2011).

    Article  Google Scholar 

  28. Reinert, M. et al. Effects of cerebral perfusion pressure and increased fraction of inspired oxygen on brain tissue oxygen, lactate and glucose in patients with severe head injury. Acta Neurochir. (Wien) 145, 341–349 (2003).

    CAS  Google Scholar 

  29. Goren, S., Kahveci, N., Alkan, T., Goren, B. & Korfali, E. The effects of sevoflurane and isoflurane on intracranial pressure and cerebral perfusion pressure after diffuse brain injury in rats. J. Neurosurg. Anesthesiol. 13, 113–119 (2001).

    Article  CAS  Google Scholar 

  30. Kahveci, F.S. Propofol versus isoflurane anesthesia under hypothermic conditions: effects on intracranial pressure and local cerebral blood flow after diffuse traumatic brain injury in the rat. Surg. Neurol. 56, 206–214 (2001).

    Article  CAS  Google Scholar 

  31. Krasowski, M.D. et al. General anesthetic potencies of a series of propofol analogs correlate with potency for potentiation of gamma-aminobutyric acid (GABA) current at the GABA(A) receptor but not with lipid solubility. J. Pharmacol. Exp. Ther. 297, 338–351 (2001).

    CAS  PubMed  Google Scholar 

  32. Ozturk, E. et al. Propofol and erythropoietin antioxidant properties in rat brain injured tissue. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 81–86 (2008).

    Article  CAS  Google Scholar 

  33. Jevtovic-Todorovic, V. et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat. Med. 4, 460–463 (1998).

    Article  CAS  Google Scholar 

  34. Kawaguchi, M., Furuya, H. & Patel, P.M. Neuroprotective effects of anesthetic agents. J. Anesth. 19, 150–156 (2005).

    Article  Google Scholar 

  35. Mcintosh, T.K., Vink, R., Soares, H., Hayes, R. & Simon, R. Effect of noncompetitive blockade of N-methyl-D-aspartate receptors on the neurochemical sequelae of experimental brain injury. J. Neurochem. 55, 1170–1179 (1990).

    Article  CAS  Google Scholar 

  36. Smith, D.H., Okiyama, K., Gennarelli, T.A. & McIntosh, T.K. Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury. Neurosci. Lett. 157, 211–214 (1993).

    Article  CAS  Google Scholar 

  37. Ward, J.L., Harting, M.T., Cox, C.S. Jr. & Mercer, D.W. Effects of ketamine on endotoxin and traumatic brain injury induced cytokine production in the rat. J. Trauma 70, 1471–1479 (2011).

    Article  CAS  Google Scholar 

  38. McIntosh, T.K., Fernyak, S., Yamakami, I. & Faden, A.I. Central and systemic kappa-opioid agonists exacerbate neurobehavioral response to brain injury in rats. Am. J. Physiol. 267, R665–R672 (1994).

    CAS  PubMed  Google Scholar 

  39. Raghupathi, R. & McIntosh, T.K. Pharmacotherapy for traumatic brain injury: a review. Proc. West. Pharmacol. Soc. 41, 241–246 (1998).

    CAS  PubMed  Google Scholar 

  40. Choi, S.H., Aid, S. & Bosetti, F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol. Sci. 30, 174–181 (2009).

    Article  CAS  Google Scholar 

  41. Strauss, K.I. COX2 inhibitors for acquired brain injuries: is the time ripe? Crit. Care Med. 38, 723–724 (2010).

    Article  Google Scholar 

  42. Simmons, D.L., Botting, R.M. & Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56, 387–437 (2004).

    Article  CAS  Google Scholar 

  43. Thau-Zuchman, O., Shohami, E., Alexandrovich, A.G., Trembovler, V. & Leker, R.R. The anti-inflammatory drug carprofen improves long-term outcome and induces gliogenesis after traumatic brain injury. J. Neurotrauma 29, 375–384 (2011).

    Article  Google Scholar 

  44. Browne, K.D., Iwata, A., Putt, M.E. & Smith, D.H. Chronic ibuprofen administration worsens cognitive outcome following traumatic brain injury in rats. Exp. Neurol. 201, 301–307 (2006).

    Article  CAS  Google Scholar 

  45. Cernak, I., O'Connor, C. & Vink, R. Inhibition of cyclooxygenase 2 by nimesulide improves cognitive outcome more than motor outcome following diffuse traumatic brain injury in rats. Exp. Brain Res. 147, 193–199 (2002).

    Article  CAS  Google Scholar 

  46. Gopez, J.J. et al. Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 56, 590–604 (2005).

    Article  Google Scholar 

  47. Zohar, O., Getslev, V., Miller, A.L., Schreiber, S. & Pick, C.G. Morphine protects for head trauma induced cognitive deficits in mice. Neurosci. Lett. 394, 239–242 (2006).

    Article  CAS  Google Scholar 

  48. Hall, E.D., Wolf, D.L., Althaus, J.S. & Von Voigtlander, P.F. Beneficial effects of the kappa opioid receptor agonist U-50488H in experimental acute brain and spinal cord injury. Brain Res. 435, 174–180 (1987).

    Article  CAS  Google Scholar 

  49. McIntosh, T.K., Hayes, R.L., DeWitt, D.S., Agura, V. & Faden, A.I. Endogenous opioids may mediate secondary damage after experimental brain injury. Am. J. Physiol. 253, E565–E574 (1987).

    CAS  PubMed  Google Scholar 

  50. Hamm, R.J., O'Dell, D.M., Pike, B.R. & Lyeth, B.G. Cognitive impairment following traumatic brain injury: the effect of pre- and post-injury administration of scopolamine and MK-801. Brain Res. Cogn. Brain Res. 1, 223–226 (1993).

    Article  CAS  Google Scholar 

  51. Lyeth, B.G., Liu, S. & Hamm, R.J. Combined scopolamine and morphine treatment of traumatic brain injury in the rat. Brain Res. 617, 69–75 (1993).

    Article  CAS  Google Scholar 

  52. Hayes, R.L. et al. Possible protective effect of endogenous opioids in traumatic brain injury. J. Neurosurg. 72, 252–261 (1990).

    Article  CAS  Google Scholar 

  53. Thompson, H.J. et al. Lateral fluid percussion brain injury: a 15-year review and evaluation. J. Neurotrauma 22, 42–75 (2005).

    Article  Google Scholar 

  54. McIntosh, T.K., Noble, L., Andrews, B. & Faden, A.I. Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Cent. Nerv. Syst. Trauma 4, 119–134 (1987).

    Article  CAS  Google Scholar 

  55. McIntosh, T.K. et al. Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience 28, 233–244 (1989).

    Article  CAS  Google Scholar 

  56. Alder, J., Fujioka, W., Lifshitz, J., Crockett, D.P. & Thakker-Varia, S. Lateral fluid percussion: model of traumatic brain injury in mice. J. Vis. Exp. 54, 3063 (2011).

    Google Scholar 

  57. Dixon, C.E., Clifton, G.L., Lighthall, J.W., Yaghmai, A.A. & Hayes, R.L. A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods 39, 253–262 (1991).

    Article  CAS  Google Scholar 

  58. Lighthall, J.W. Controlled cortical impact: a new experimental brain injury model. J. Neurotrauma 5, 1–15 (1988).

    Article  CAS  Google Scholar 

  59. Saatman, K.E., Feeko, K.J., Pape, R.L. & Raghupathi, R. Differential behavioral and histopathological responses to graded cortical impact injury in mice. J. Neurotrauma 23, 1241–1253 (2006).

    Article  Google Scholar 

  60. Cheng, J. et al. Development of a rat model for studying blast-induced traumatic brain injury. J. Neurol. Sci. 294, 23–28 (2010).

    Article  Google Scholar 

  61. Risling, M. & Davidsson, J. Experimental animal models for studies on the mechanisms of blast-induced neurotrauma. Front. Neurol. 3, 30 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. Reneer, D.V. et al. A multi-mode shock tube for investigation of blast-induced traumatic brain injury. J. Neurotrauma 28, 95–104 (2011).

    Article  Google Scholar 

  63. Heath, D.L. & Vink, R. Impact acceleration-induced severe diffuse axonal injury in rats: characterization of phosphate metabolism and neurologic outcome. J. Neurotrauma 12, 1027–1034 (1995).

    Article  CAS  Google Scholar 

  64. Schmidt, R.H., Scholten, K.J. & Maughan, P.H. Cognitive impairment and synaptosomal choline uptake in rats following impact acceleration injury. J. Neurotrauma 17, 1129–1139 (2000).

    Article  CAS  Google Scholar 

  65. Pandey, D.K., Yadav, S.K., Mahesh, R. & Rajkumar, R. Depression-like and anxiety-like behavioural aftermaths of impact accelerated traumatic brain injury in rats: a model of comorbid depression and anxiety? Behav. Brain Res. 205, 436–442 (2009).

    Article  Google Scholar 

  66. Marmarou, A. et al. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J. Neurosurg. 80, 291–300 (1994).

    Article  CAS  Google Scholar 

  67. Foda, M.A. & Marmarou, A. A new model of diffuse brain injury in rats. Part II: morphological characterization. J. Neurosurg. 80, 301–313 (1994).

    Article  CAS  Google Scholar 

  68. Feeney, D.M., Boyeson, M.G., Linn, R.T., Murray, H.M. & Dail, W.G. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 211, 67–77 (1981).

    Article  CAS  Google Scholar 

  69. Kilbourne, M. et al. Novel model of frontal impact closed head injury in the rat. J. Neurotrauma 26, 2233–2243 (2009).

    Article  Google Scholar 

  70. Williams, A.J. et al. Characterization of a new rat model of penetrating ballistic brain injury. J. Neurotrauma 22, 313–331 (2005).

    Article  Google Scholar 

  71. Williams, A.J., Hartings, J.A., Lu, X.C., Rolli, M.L. & Tortella, F.C. Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration. J. Neurotrauma 23, 1828–1846 (2006).

    Article  Google Scholar 

  72. Plantman, S., Ng, K.C., Lu, J., Davidsson, J. & Risling, M. Characterization of a novel rat model of penetrating traumatic brain injury. J. Neurotrauma 29, 1219–1232 (2012).

    Article  Google Scholar 

  73. Ozturk, E. et al. Antioxidant properties of propofol and erythropoietin after closed head injury in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 922–927 (2005).

    Article  CAS  Google Scholar 

  74. Zohar, O. et al. Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience 118, 949–955 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Pooja Talauliker for her contributions to the outline and the organization of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Lifshitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowe, R., Harrison, J., Thomas, T. et al. Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim 42, 286–291 (2013). https://doi.org/10.1038/laban.257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing