Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Bayesian population PBPK model for multiroute chloroform exposure

Abstract

A Bayesian hierarchical model was developed to estimate the parameters in a physiologically based pharmacokinetic (PBPK) model for chloroform using prior information and biomarker data from different exposure pathways. In particular, the model provides a quantitative description of the changes in physiological parameters associated with hot-water bath and showering scenarios. Through Bayesian inference, uncertainties in the PBPK parameters were reduced from the prior distributions. Prediction of biomarker data with the calibrated PBPK model was improved by the calibration. The posterior results indicate that blood flow rates varied under two different exposure scenarios, with a two-fold increase of the skin's blood flow rate predicted in the hot-bath scenario. This result highlights the importance of considering scenario-specific parameters in PBPK modeling. To demonstrate the application of a probability approach in toxicological assessment, results from the posterior distributions from this calibrated model were used to predict target tissue dose based on the rate of chloroform metabolized in liver. This study demonstrates the use of the Bayesian approach to optimize PBPK model parameters for typical household exposure scenarios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • AEgis Technologies. acslX Modeling and Simulation Software 2008: http://www.acslsim.com/.

  • Ainsworth B.E. The Compendium of Physical Activities Tracking Guide, Prevention Research Center, Norman J. Arnold School of Public Health, University of South Carolina 2002: http://prevention.sph.sc.edu/tools/docs/documents_compendium.pdf.

  • Allison T.G., Maresh C.M., and Armstrong L.E. Cardiovascular responses in a whirlpool bath at 40 degrees C versus user-controlled water temperatures. Mayo Clin Proc 1998: 73 (3): 210–215.

    Article  CAS  PubMed  Google Scholar 

  • Allison T.G., and Reger W.E. Comparison of responses of men to immersion in circulating water at 40.0 and 41.5 degrees C. Aviat Space Environ Med 1998: 69 (9): 845–850.

    CAS  PubMed  Google Scholar 

  • Andersen M.E. Toxicokinetic modeling and its applications in chemical risk assessment. Toxicol Lett 2003: 138 (1–2): 9–27.

    Article  CAS  PubMed  Google Scholar 

  • ATSDR. Toxicological profile for chloroform, U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry 1997: http://www.atsdr.cdc.gov/toxprofiles/tp6.pdf.

  • Barash P., Cullen B., and Stoelting R. Handbook of Clinical Anesthesia. Lippincott Williams and Wilkins, USA, 2000.

    Google Scholar 

  • Bernillon P., and Bois F.Y. Statistical issues in toxicokinetic modeling: a Bayesian perspective. Environ Health Perspect 2000: 108 (Suppl 5): 883–893.

    Article  CAS  PubMed  Google Scholar 

  • Bogaards J.J., van Ommen B., and van Bladeren P.J. Interindividual differences in the in vitro conjugation of methylene chloride with glutathione by cytosolic glutathione S-transferase in 22 human liver samples. Biochem Pharmacol 1993: 45 (10): 2166–2169.

    Article  CAS  PubMed  Google Scholar 

  • Bois F.Y. Analysis of PBPK models for risk characterization. Ann NY Acad Sci 1999: 895: 317–337.

    Article  CAS  PubMed  Google Scholar 

  • Bois F.Y. Statistical analysis of Clewell et al. PBPK model of trichloroethylene kinetics. Environ Health Perspect 2000a: 108 (Suppl 2): 307–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bois F.Y. Statistical analysis of Fisher et al. PBPK model of trichloroethylene kinetics. Environ Health Perspect 2000b: 108 (Suppl 2): 275–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bois F.Y., Gelman A., Jiang J., Maszle D.R., Zeise L., and Alexeef G. Population toxicokinetics of tetrachloroethylene. Arch Toxicol 1996a: 70 (6): 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Bois F.Y., Jackson E.T., Pekari K., and Smith M.T. Population toxicokinetics of benzene. Environ Health Perspect 1996b: 104 (Suppl 6): 1405–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bois F.Y., Smith T.J., Gelman A., Chang H.Y., and Smith A.E. Optimal design for a study of butadiene toxicokinetics in humans. Toxicol Sci 1999: 49 (2): 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Bolt H.M., Roos P.H., and Their R. The cytochrome P-450 isoenzyme CYP2E1 in the biological processing of industrial chemicals: consequences for occupational and environmental medicine. Int Arch Occup Environ Health 2003: 76 (3): 174–185.

    CAS  PubMed  Google Scholar 

  • Boone T., Westendorf T., and Ayres P. Cardiovascular responses to a hot tub bath. J Altern Complement Med 1999: 5 (3): 301–304.

    Article  CAS  PubMed  Google Scholar 

  • Bortot P., Thomaseth K., and Salvan A. Population toxicokinetic analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin using Bayesian techniques. Stat Med 2002: 21 (4): 533–547.

    Article  PubMed  Google Scholar 

  • Brooks S.P., and Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 1998: 7: 434–455.

    Google Scholar 

  • Charkoudian N. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 2003: 78 (5): 603–612.

    Article  PubMed  Google Scholar 

  • Clewell H.J., Gentry P.R., Covington T.R., and Gearhart J.M. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ Health Perspect 2000: 108: 283–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clewell H.J., Gentry P.R., Kester J.E., and Andersen M.E. Evaluation of physiologically based pharmacokinetic models in risk assessment: an example with perchloroethylene. Crit Rev Toxicol 2005: 35 (5): 413–433.

    Article  CAS  PubMed  Google Scholar 

  • Clewell H.J., Lee T.S., and Carpenter R.L. Sensitivity of physiologically-based pharmacokinetic models to variation in model parameters—methylene-chloride. Risk Anal 1994: 14 (4): 521–531.

    Article  PubMed  Google Scholar 

  • Clewell H.J., Tan Y.M., Campbell J.L., and Andersen M.E. Quantitative interpretation of human biomonitoring data. Toxicol Appl Pharmacol 2008: 231 (1): 122–133.

    Article  CAS  PubMed  Google Scholar 

  • Clewell R.A., Merrill E.A., Yu K.O., Mahle D.A., Sterner T.R., Mattie D.R., Robinson P.J., Fisher J.W., and Gearhart J.M. Predicting fetal perchlorate dose and inhibition of iodide kinetics during gestation: a physiologically-based pharmacokinetic analysis of perchlorate and iodide kinetics in the rat. Toxicol Sci 2003: 73 (2): 235–255.

    Article  CAS  PubMed  Google Scholar 

  • Corley R.A., Gordon S.M., and Wallace L.A. Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures. Toxicol Sci 2000: 53 (1): 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Corley R.A., Mendrala A.L., Smith F.A., Staats D.A., Gargas M.L., Conolly R.B., Andersen M.E., and Reitz R.H. Development of a physiologically based pharmacokinetic model for chloroform. Toxicol Appl Pharmacol 1990: 103 (3): 512–527.

    Article  CAS  PubMed  Google Scholar 

  • Gallegos A.F., and Wenzel W.J. HUMTRN: Documentation and Verification for an ICRP-Based Age- and Sex-Specific Human Simulation Model for Radionuclide Dose Assessment. Los Alamos National Laboratory, Los Alamos, NM, 1984.

    Google Scholar 

  • Gelman A., Bois F., and Jiang J.M. Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J Am Stat Assoc 1996: 91 (436): 1400–1412.

    Article  Google Scholar 

  • Georgopoulos P.G., Wang S.W., Vyas V.M., Sun Q., Burke J., Vedantham R., McCurdy T., and Ozkaynak H. A source-to-dose assessment of population exposures to fine PM and ozone in Philadelphia, PA, during a summer 1999 episode. J Expo Anal Environ Epidemiol 2005: 15 (5): 439–457.

    Article  CAS  PubMed  Google Scholar 

  • Gibb H.J., Checkoway H., and Stayner L. Improving risk assessment: priorities for epidemiologic research. Human Ecol Risk Assess 2002: 8: 1397–1404.

    Article  Google Scholar 

  • Gordon S.M., Wallace L.A., Callahan P.J., Kenny D.V., and Brinkman M.C. Effect of water temperature on dermal exposure to chloroform. Environ Health Perspect 1998: 106 (6): 337–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hack C.E., Chiu W.A., Jay Zhao Q., and Clewell H.J. Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites. Regul Toxicol Pharmacol 2006: 46 (1): 63–83.

    Article  CAS  PubMed  Google Scholar 

  • Haddad S., Tardif G.C., and Tardif R. Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes. J Toxicol Environ Health A 2006: 69 (23): 2095–2136.

    Article  CAS  PubMed  Google Scholar 

  • ICRP. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP 2002: 32 (3–4): 5–265.

    Google Scholar 

  • ILSI. An evaluation of EPA's proposed guidelines for carcinogen risk assessment using chloroform and dichloroacetate as case studies: report of an expert panel. International Life Sciences Institute, Washington, DC, 1997.

  • Jo W.K., Weisel C.P., and Lioy P.J. Routes of chloroform exposure and body burden from showering with chlorinated tap water. Risk Anal 1990: 10 (4): 575–580.

    Article  CAS  PubMed  Google Scholar 

  • Johanson G., and Naslund P.H. Spreadsheet programming--a new approach in physiologically based modeling of solvent toxicokinetics. Toxicol Lett 1988: 41 (2): 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson F., Bois F., and Johanson G. Physiologically based pharmacokinetic modeling of inhalation exposure of humans to dichloromethane during moderate to heavy exercise. Toxicol Sci 2001: 59 (2): 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson F., and Johanson G. Bayesian estimation of variability in adipose tissue blood flow in man by physiologically based pharmacokinetic modeling of inhalation exposure to toluene. Toxicology 2001: 157 (3): 177–193.

    Article  CAS  PubMed  Google Scholar 

  • Kanter G.S. Glomerular filtration and renal plasma flow during hyperthermia. Am J Physiol 1960: 198: 1044–1048.

    Article  CAS  PubMed  Google Scholar 

  • Kenney M., and Musch T. Senescence alters blood flow responses to acute heat stress. Am J Physiol Heart Circ Physiol 2004: 286: 1480–1485.

    Article  Google Scholar 

  • Kim R.B., Yamazaki H., Chiba K., O'Shea D., Mimura M., Guengerich F.P., Ishizaki T., Shimada T., and Wilkinson G.R. In vivo and in vitro characterization of CYP2E1 activity in Japanese and Caucasians. J Pharmacol Exp Ther 1996: 279 (1): 4–11.

    CAS  PubMed  Google Scholar 

  • Koda M., Komori S., Nagami M., Minohara M., Murawaki Y., Horie Y., Suou T., Kawasaki H., and Ikawa S. Effects of bathing in hot water on portal hemodynamics in healthy subjects and in patients with compensated liver cirrhosis. Intern Med 1995: 34 (7): 628–631.

    Article  CAS  PubMed  Google Scholar 

  • Layton D.W. Metabolically consistent breathing rates for use in dose assessments. Health Phys 1993: 64 (1): 23–36.

    Article  CAS  PubMed  Google Scholar 

  • Levesque B., Ayotte P., Tardif R., Charest-Tardif G., Dewailly E., Prud'Homme D., Gingras G., Allaire S., and Lavoie R. Evaluation of the health risk associated with exposure to chloroform in indoor swimming pools. J Toxicol Environ Health A 2000: 61 (4): 225–243.

    Article  CAS  PubMed  Google Scholar 

  • Liao K.H., Tan Y.M., Conolly R.B., Borghoff S.J., Gargas M.L., Andersen M.E., and Clewell III H.J. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform. Risk Anal 2007: 27 (6): 1535–1551.

    Article  PubMed  Google Scholar 

  • Louis T.A. Assessing, accommodating, and interpreting the influences of heterogeneity. Environ Health Perspect 1991: 90: 215–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marino D.J., Clewell H.J., Gentry P.R., Covington T.R., Hack C.E., David R.M., and Morgott D.A. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice. Regul Toxicol Pharmacol 2006: 45 (1): 44–54.

    Article  CAS  PubMed  Google Scholar 

  • Miwa C., Matsukawa T., Iwase S., Sugiyama Y., Mano T., Sugenoya J., Yamaguchi H., and Kirsch K.A. Human cardiovascular responses to a 60-min bath at 40 degrees C. Environ Med 1994: 38 (1): 77–80.

    CAS  PubMed  Google Scholar 

  • Nakai J.S., Stathopulos P.B., Campbell G.L., Chu I., Li-Muller A., and Aucoin R. Penetration of chloroform, trichloroethylene, and tetrachloroethylene through human skin. J Toxicol Environ Health A 1999: 58 (3): 157–170.

    Article  CAS  PubMed  Google Scholar 

  • Nestorov I. Modeling and simulation of variability and uncertainty in toxicokinetics and pharmacokinetics. Toxicol Lett 2001: 120 (1–3): 411–420.

    Article  CAS  PubMed  Google Scholar 

  • Price P.S., Conolly R.B., Chaisson C.F., Gross E.A., Young J.S., Mathis E.T., and Tedder D.R. Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit Rev Toxicol 2003: 33 (5): 469–503.

    Article  PubMed  Google Scholar 

  • Raucy J.L. Risk assessment: toxicity from chemical exposure resulting from enhanced expression of CYP2E1. Toxicology 1995: 105 (2–3): 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Roy A., Weisel C., Lioy P.J., and Georgopoulos P.G. A distributed parameter physiologically based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds. Risk Anal 1996: 16: 147–160.

    Article  CAS  PubMed  Google Scholar 

  • Sohn M.D., McKone T.E., and Blancato J.N. Reconstructing population exposures from dose biomarkers: inhalation of trichloroethylene (TCE) as a case study. J Expo Anal Environ Epidemiol 2004: 14 (3): 204–213.

    Article  CAS  PubMed  Google Scholar 

  • Song C.W., Chelstrom L.M., and Haumschild D.J. Changes in human skin blood flow by hyperthermia. Int J Radiat Oncol Biol Phys 1990: 18 (4): 903–907.

    Article  CAS  PubMed  Google Scholar 

  • Steiner E.C., Rey T.D., and McCroskey P.S. Reference Guide for Simusolv. The Dow Chemical Company, Midland, MI, 1990.

    Google Scholar 

  • Tan Y.M., Liao K.H., Conolly R.B., Blount B.C., Mason A.M., and Clewell H.J. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform. J Toxicol Environ Health A 2006: 69 (18): 1727–1756.

    Article  CAS  PubMed  Google Scholar 

  • The Mathworks Inc. Matlab and Simulink Technical Computing. 2008: http://www.mathworks.com/.

  • USEPA. Dermal Exposure Assessment: Principles and Application. EPA/600/8-91/011B, USEPA Office of Health and Environmental Assessment 1992: http://www.epa.gov/ncea/pdfs/efh/references/DEREXP.PDF.

  • USEPA. Exposure Factors Handbook. EPA/600/C-99/001, US Environmental Protection Agency 1997: http://www.epa.gov/ncea/pdfs/efh/efh-complete.pdf.

  • Wallace L.A. Human exposure and body burden for chloroform and other trihalomethanes. Crit Rev Environ Sci Technol 1997: 27: 113–194.

    Article  CAS  Google Scholar 

  • Wilkes C.R., Small M.J., Davidson C.I., and Andelman J.B. Modeling the effects of water usage and co-behavior on inhalation exposures to contaminants volatilized from household water. J Expo Anal Environ Epidemiol 1996: 6 (4): 393–412.

    CAS  PubMed  Google Scholar 

  • Xu X., Mariano T.M., Laskin J.D., and Weisel C.P. Percutaneous absorption of trihalomethanes, haloacetic acids, and haloketones. Toxicol Appl Pharmacol 2002: 184 (1): 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Xu X., and Weisel C.P. Dermal uptake of chloroform and haloketones during bathing. J Expo Anal Environ Epidemiol 2005a: 15 (4): 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Xu X., and Weisel C.P. Human respiratory uptake of chloroform and haloketones during showering. J Expo Anal Environ Epidemiol 2005b: 15 (1): 6–16.

    Article  CAS  PubMed  Google Scholar 

  • Zeise L., Hattis D., Andersen M., Bailer A.J., Bayard S., Chen C., Clewell H., Conolly R., Crump K., Dunson D., Finkel A., Haber L., Jarabek A., Kodell R., Krewski D., Thomas D., Thorslund T., and Wassell J.T. Improving risk assessment: research opportunities in dose response modeling to improve risk assessment. Human Ecol Risk Assess 2002: 8: 1424–1444.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Exposure and Risk Modeling (CERM - EPAR827033) and the Environmental Bioinformatics and Computational Toxicology Center (GAD R 832721-010). Additional support has been provided by the NIEHS Center for Environmental Health Sciences at EOHSI (Grant No. P01 ES11256-01). We acknowledge contributions of Dr. Amit Roy, Dr. Clifford Weisel, Linda Everett, Pamela Shade, Alan Sasso, and numerous EOHSI collaborators. We thank Dr. Harvey Clewell for his insightful and important comments on the applications of PBPK models in risk assessment. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuching Yang.

Appendices

APPENDIX A

The rate of change of the amount of chemical uptake in viable skin compartment in the DP skin model is described as:

The mass flux at interface between stratum corneum and viable skin is calculated as:

The rate of change of the concentration in Nth layer of stratum corneum is calculated using the central difference formula:

And, the stratum corneum diffusivity can be calculated as:

Dsc=effective stratum corneum diffusivity [cm2/min]

Perm=stratum corneum permeability [cm/min]

Lsc=stratum corneum thickness [cm]

Psc,water=partition coefficient between stratum corneum and water [unitless]

Csc,n=chemical concentration in the nth layer of stratum corneum

N=number of layer defined in the stratum corneum

Jsc=dermal mass flux

APPENDIX B

The sensitivity coefficient were calculated as follows:

Sensitivity coefficient (Clewell et al., 2003):

where

A is the exhaled conc with 1% increased parameter value,

B is the exhaled conc at the starting parameter value,

C is the parameter value after 1% increase, and

D is the original parameter value.

APPENDIX C

Age, gender, and bodyweight-dependent scaling functions for selected PBPK model parameters.

Equations used to calculate the cardiac output (Qcardiac) and inhalation rate (QPulmonary)

where

VO2=oxygen consumption (ml/kg/min)

AVOdiff=difference in volume of oxygen between arterial and venous blood (40–60 ml/l for adult, a uniform distribution between 40 and 60 was used in the model)

MET=metabolic equivalent of tasks (unitless)

BM=body mass, assumed to be same as body weight (BW)

F=conversion factor (3.5) from oxygen consumption to MET (ml/kg/min/MET)

where BMR=basal metabolic rate (e.g., 1.16 MJ/day for 30 year old, 70 kg male)

H=oxygen update factor, the volume of oxygen consumed in the production of 1 MJ energy expended (e.g., 0.21 m3/MJ for 30 year old, 70 kg male)

VQ=ventilatory equivalent (unitless), the ratio of minute volume to oxygen uptake (i.e., 27.5 for 30 year old, 70 kg male)

Scaling functions used to calculate tissue volumes

Body surface area (SA) [cm2]

Male, age .ge. 18: SA=252 × BW

Female, age .ge. 14: SA=288 × (1−0.00201 × (age−14) × BW

Fat tissue mass (assume the fat density=0.93)

Male, age .ge. 18: Volumefat=(0.21+0.000307 × (age−18)) × BW2/100/0.93

Female, age .ge. 14: Volumefat=0.003732 × (1+0.0055 × (age−14) × BW2)/0.93

Other tissues (assume the density=1)

Skin tissue mass

Male, age .ge. 15: Volumeskin=0.0367 × BW

Female, age .ge. 15: Volumeskin=0.044 × BW

Kidney: Volumekidney=8.38 × BW0.85 × 0.001

Liver: Volumeliver=92 × BW0.7 × 0.001

Rapidly perfused:

Slowly perfused:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Xu, X. & Georgopoulos, P. A Bayesian population PBPK model for multiroute chloroform exposure. J Expo Sci Environ Epidemiol 20, 326–341 (2010). https://doi.org/10.1038/jes.2009.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2009.29

Keywords

This article is cited by

Search

Quick links