Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Brain stimulation in obesity

Abstract

Obesity is taking up epidemic proportions worldwide with significant impacts on the health of both the affected individual and on society as a whole. Treatment approaches consist of behavioural and pharmacological approaches, however, these are often found to be ineffective. In severe obesity, bariatric surgery is frequently performed. Unfortunately, 40% of patients show substantial weight gain over the long term or display the associated metabolic syndrome, making the development of novel therapies necessary. This review summarizes some of the current conceptual models, in particularly the ‘food addiction’ model, and then discusses specific therapeutic targets of brain stimulation, both non-invasive (transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and transcutaneous vagus nerve stimulation (VNS)) and invasive (deep brain stimulation and invasive VNS). As we will show, neuromodulatory approaches represent a promising tool for targeting specific brain structures implicated in the pathophysiology of obesity. Non-invasive techniques such as TMS, tDCS and transcutaneous VNS need further investigation before they may become ready for clinical usage. The currently available study data suggest that deep brain stimulation may become an effective and acceptable therapy for otherwise treatment-resistant obese patients. The results of the currently undergoing clinical trials are eagerly awaited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kelly T, Yang W, Chen C-S, Reynolds K, He J . Global burden of obesity in 2005 and projections to 2030. Int J Obes 2008; 32: 1431–1437.

    Article  CAS  Google Scholar 

  2. Collaboration NRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19· 2 million participants. Lancet 2016; 387: 1377–1396.

    Article  Google Scholar 

  3. Mokdad AH, Marks JS, Stroup DF, Gerberding JL . Actual causes of death in the United States, 2000. JAMA 2004; 291: 1238–1245.

    Article  PubMed  Google Scholar 

  4. Spieker EA, Pyzocha N . Economic impact of obesity. Prim Care 2016; 43: 83–95.

    Article  PubMed  Google Scholar 

  5. Finkelstein EA, Trogdon JG, Cohen JW, Dietz W . Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Affairs 2009; 28: w822–w831.

    Article  PubMed  Google Scholar 

  6. Toubro S, Astrup A . Randomised comparison of diets for maintaining obese subjects' weight after major weight loss: ad lib, low fat, high carbohydrate diet fixed energy intake. BMJ 1997; 314: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brinkworth GD, Buckley JD, Noakes M, Clifton PM, Wilson CJ . Long-term effects of a very low-carbohydrate diet and a low-fat diet on mood and cognitive function. Arch Intern Med 2009; 169: 1873–1880.

    Article  CAS  PubMed  Google Scholar 

  8. Slentz CA, Duscha BD, Johnson JL, Ketchum K, Aiken LB, Samsa GP et al. Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE—a randomized controlled study. Arch Intern Med 2004; 164: 31–39.

    Article  PubMed  Google Scholar 

  9. Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in menA randomized, controlled trial. Ann Intern Med 2000; 133: 92–103.

    Article  CAS  PubMed  Google Scholar 

  10. Fidler MC, Sanchez M, Raether B, Weissman NJ, Smith SR, Shanahan WR et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab 2011; 96: 3067–3077.

    Article  CAS  PubMed  Google Scholar 

  11. Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet 2011; 377: 1341–1352.

    Article  CAS  PubMed  Google Scholar 

  12. Torgerson JS, Hauptman J, Boldrin MN, Sjöström L . Xenical in the prevention of diabetes in obese subjects (XENDOS) study. Diabetes Care 2004; 27: 155–161.

    Article  CAS  PubMed  Google Scholar 

  13. Saunders KH, Shukla AP, Igel LI, Kumar RB, Aronne LJ . Pharmacotherapy for obesity. Endocrinol Metab Clin North Am 2016; 45: 521–538.

    Article  PubMed  Google Scholar 

  14. Ifland J, Preuss H, Marcus M, Rourke K, Taylor W, Burau K et al. Refined food addiction: a classic substance use disorder. Med Hypotheses 2009; 72: 518–526.

    Article  CAS  PubMed  Google Scholar 

  15. Livhits M, Mercado C, Yermilov I, Parikh JA, Dutson E, Mehran A et al. Preoperative predictors of weight loss following bariatric surgery: systematic review. Obes Surg 2012; 22: 70–89.

    Article  PubMed  Google Scholar 

  16. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 2004; 292: 1724–1737.

    Article  CAS  PubMed  Google Scholar 

  17. Flum DR, Salem L, Elrod JAB, Dellinger EP, Cheadle A, Chan L . Early mortality among medicare beneficiaries undergoing bariatric surgical procedures. JAMA 2005; 294: 1903–1908.

    Article  CAS  PubMed  Google Scholar 

  18. Christou NV, Look D, MacLean LD . Weight gain after short-and long-limb gastric bypass in patients followed for longer than 10 years. Ann Surg 2006; 244: 734–740.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lewandowski K, Turinsky S . Beatmung von Patienten mit Adipositas per magna in Anästhesie und Intensivmedizin. Der Anaesthesist 2008; 57: 1015–1034.

    Article  CAS  PubMed  Google Scholar 

  20. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357: 741–752.

    Article  PubMed  Google Scholar 

  21. Gearhardt AN, Grilo CM, DiLeone RJ, Brownell KD, Potenza MN . Can food be addictive? Public health and policy implications. Addiction (Abingdon, England) 2011; 106: 1208–1212.

    Article  Google Scholar 

  22. Devlin MJ . Is there a place for obesity in DSM‐V? Int J Eat Disord 2007; 40: S83–S88.

    Article  PubMed  Google Scholar 

  23. Volkow ND, O’Brien CP . Issues for DSM-V: should obesity be included as a brain disorder? In: Am Psychiatric Assoc 2007; 164: 708–710.

    Article  Google Scholar 

  24. Teegarden SL, Bale TL . Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 2007; 61: 1021–1029.

    Article  PubMed  Google Scholar 

  25. Berridge KC . Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 1996; 20: 1–25.

    Article  CAS  PubMed  Google Scholar 

  26. Taha SA, Fields HL . Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. Journal Neurosci 2005; 25: 1193–1202.

    Article  CAS  Google Scholar 

  27. Schultz W, Dayan P, Montague PR . A neural substrate of prediction and reward. Science 1997; 275: 1593–1599.

    Article  CAS  PubMed  Google Scholar 

  28. Hollerman JR, Schultz W . Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1998; 1: 304–309.

    Article  CAS  PubMed  Google Scholar 

  29. Schultz W . Getting formal with dopamine and reward. Neuron 2002; 36: 241–263.

    Article  CAS  PubMed  Google Scholar 

  30. Pavlov IP (1927) Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Ann Neurosci 2010; 17: 136–141.

  31. Bendotti C, Berettera C, Invernizzi R, Samanin R . Selective involvement of dopamine in the nucleus accumbens in the feeding response elicited by muscimol injection in the nucleus raphe dorsalis of sated rats. Pharmacol Biochem Behav 1986; 24: 1189–1193.

    Article  CAS  PubMed  Google Scholar 

  32. Martel P, Fantino M . Influence of the amount of food ingested on mesolimbic dopaminergic system activity: a microdialysis study. Pharmacol Biochem Behav 1996; 55: 297–302.

    Article  CAS  PubMed  Google Scholar 

  33. Finlayson G . Food addiction and obesity: unnecessary medicalization of hedonic overeating. Nat Rev Endocrinol 2017; 13: 493–498.

    Article  PubMed  Google Scholar 

  34. Westwater ML, Fletcher PC, Ziauddeen H . Sugar addiction: the state of the science. Eur J Nutr 2016; 55: 55–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ziauddeen H, Alonso-Alonso M, Hill JO, Kelley M, Khan NA . Obesity and the neurocognitive basis of food reward and the control of intake. Adv Nutr 2015; 6: 474–486.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hebebrand J, Albayrak Ö, Adan R, Antel J, Dieguez C, de Jong J et al. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci Biobehav Rev 2014; 47: 295–306.

    Article  PubMed  Google Scholar 

  37. Ziauddeen H, Farooqi IS, Fletcher PC . Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci 2012; 13: 279–286.

    Article  CAS  PubMed  Google Scholar 

  38. Rogers PJ . Food and drug addictions: similarities and differences. Pharmacol Biochem Behav 2017; 153: 182–190.

    Article  CAS  PubMed  Google Scholar 

  39. Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel L et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage 2015; 8: 1–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM . Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol 2008; 117: 924.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Demos KE, Heatherton TF, Kelley WM . Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci 2012; 32: 5549–5552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun X, Kroemer NB, Veldhuizen MG, Babbs AE, de Araujo IE, Gitelman DR et al. Basolateral amygdala response to food cues in the absence of hunger is associated with weight gain susceptibility. J Neurosci 2015; 35: 7964–7976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yokum S, Gearhardt AN, Harris JL, Brownell KD, Stice E . Individual differences in striatum activity to food commercials predict weight gain in adolescents. Obesity 2014; 22: 2544–2551.

    PubMed  Google Scholar 

  44. Stice E, Yokum S, Bohon C, Marti N, Smolen A . Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 2010; 50: 1618–1625.

    Article  CAS  PubMed  Google Scholar 

  45. Wang G-J, Volkow ND, Fowler JS . The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 2002; 6: 601–609.

    Article  CAS  PubMed  Google Scholar 

  46. Stice E, Yokum S, Burger K, Rohde P, Shaw H, Gau JM . A pilot randomized trial of a cognitive reappraisal obesity prevention program. Physiol Behav 2015; 138: 124–132.

    Article  CAS  PubMed  Google Scholar 

  47. Volkow ND, Wang G-J, Telang F, Fowler JS, Thanos PK, Logan J et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 2008; 42: 1537–1543.

    Article  PubMed  Google Scholar 

  48. de Weijer BA, van de Giessen E, van Amelsvoort TA, Boot E, Braak B, Janssen IM et al. Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Res 2011; 1: 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nederkoorn C, Smulders FT, Havermans RC, Roefs A, Jansen A . Impulsivity in obese women. Appetite 2006; 47: 253–256.

    Article  PubMed  Google Scholar 

  50. Batterink L, Yokum S, Stice E . Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage 2010; 52: 1696–1703.

    Article  PubMed  Google Scholar 

  51. Goldman RL, Canterberry M, Borckardt JJ, Madan A, Byrne TK, George MS et al. Executive control circuitry differentiates degree of success in weight loss following gastric‐bypass surgery. Obesity 2013; 21: 2189–2196.

    Article  PubMed  Google Scholar 

  52. Barker AT . An introduction to the basic principles of magnetic nerve stimulation. J Clin Neurophysiol 1991; 8: 26–37.

    Article  CAS  PubMed  Google Scholar 

  53. Rossini PM, Burke D, Chen R, Cohen L, Daskalakis Z, Di Iorio R et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol 2015; 126: 1071–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stagg CJ, Nitsche MA . Physiological basis of transcranial direct current stimulation. Neuroscientist 2011; 17: 37–53.

    Article  PubMed  Google Scholar 

  55. Uher R, Yoganathan D, Mogg A, Eranti SV, Treasure J, Campbell IC et al. Effect of left prefrontal repetitive transcranial magnetic stimulation on food craving. Biol Psychiatry 2005; 58: 840–842.

    Article  PubMed  Google Scholar 

  56. Montenegro RA, Okano AH, Cunha FA, Gurgel JL, Fontes EB, Farinatti PT . Prefrontal cortex transcranial direct current stimulation associated with aerobic exercise change aspects of appetite sensation in overweight adults. Appetite 2012; 58: 333–338.

    Article  PubMed  Google Scholar 

  57. Gluck ME, Alonso‐Alonso M, Piaggi P, Weise CM, Jumpertz‐von Schwartzenberg R, Reinhardt M et al. Neuromodulation targeted to the prefrontal cortex induces changes in energy intake and weight loss in obesity. Obesity 2015; 23: 2149–2156.

    Article  PubMed  Google Scholar 

  58. Lowe CJ, Vincent C, Hall PA . Effects of noninvasive brain stimulation on food cravings and consumption: a meta-analytic review. Psychosom Med 2017; 79: 2–13.

    Article  PubMed  Google Scholar 

  59. Page AJ, Symonds E, Peiris M, Blackshaw LA, Young RL . Peripheral neural targets in obesity. Br J Pharmacol 2012; 166: 1537–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruiz-Tovar J, Oller I, Diez M, Zubiaga L, Arroyo A, Calpena R . Percutaneous electrical neurostimulation of dermatome T6 for appetite reduction and weight loss in morbidly obese patients. Obes Surg 2014; 24: 205–211.

    Article  PubMed  Google Scholar 

  61. Ruiz-Tovar J, Llavero C . Long-term effect of percutaneous electrical neurostimulation of dermatome T6 for Appetite reduction and weight loss in obese patients. Surg Laparosc Endosc Percutan Tech 2016; 26: 212–215.

    Article  PubMed  Google Scholar 

  62. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Preoperative Treatment With Noninvasive Intra-auricular Vagus Nerve Stimulation Pending Bariatric Surgery (OBESITE). Available fromhttps://clinicaltrials.gov/ct2/show/NCT02648191.

  63. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL . Uncovering the mechanism (s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 2004; 115: 1239–1248.

    Article  PubMed  Google Scholar 

  64. Kuhn J, Bauer R, Pohl S, Lenartz D, Huff W, Kim E et al. Observations on unaided smoking cessation after deep brain stimulation of the nucleus accumbens. Eur Addict Res 2009; 15: 196–201.

    Article  CAS  PubMed  Google Scholar 

  65. Kuhn J, Möller M, Treppmann J, Bartsch C, Lenartz D, Gründler TO et al. Deep brain stimulation of the nucleus accumbens and its usefulness in severe opioid addiction. Mol Psychiatry 2014; 19: 145.

    Article  CAS  PubMed  Google Scholar 

  66. Halpern CH, Wolf JA, Bale TL, Stunkard AJ, Danish SF, Grossman M et al. Deep brain stimulation in the treatment of obesity. J Neurosurg 2008; 109: 625–634.

    Article  PubMed  Google Scholar 

  67. Carmel P . Surgical syndromes of the hypothalamus. Clin Neurosurg 1979; 27: 133–159.

    Article  Google Scholar 

  68. Brown FD, Fessler RG, Rachlin JR, Mullan S . Changes in food intake with electrical stimulation of the ventromedial hypothalamus in dogs. J Neurosurg 1984; 60: 1253–1257.

    Article  CAS  PubMed  Google Scholar 

  69. Stenger J, Fournier T, Bielajew C . The effects of chronic ventromedial hypothalamic stimulation on weight gain in rats. Physiol Behav 1991; 50: 1209–1213.

    Article  CAS  PubMed  Google Scholar 

  70. Ruffin M-P, Nicolaidis S . Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res 1999; 846: 23–29.

    Article  CAS  PubMed  Google Scholar 

  71. Lehmkuhle M, Mayes S, Kipke D . Unilateral neuromodulation of the ventromedial hypothalamus of the rat through deep brain stimulation. J Neural Engineer 2010; 7: 036006.

    Article  CAS  Google Scholar 

  72. Krasne FB . General disruption resulting from electrical stimulus of ventromedial hypothalamus. Science 1962; 138: 822–823.

    Article  CAS  PubMed  Google Scholar 

  73. Melega WP, Lacan G, Gorgulho AA, Behnke EJ, De Salles AA . Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model. PLoS ONE 2012; 7: e30672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Torres N, Chabardes S, Piallat B, Devergnas A, Benabid A . Body fat and body weight reduction following hypothalamic deep brain stimulation in monkeys: an intraventricular approach. Int J Obes 2012; 36: 1537–1544.

    Article  CAS  Google Scholar 

  75. Delgado JM, Anand BK . Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am J Physiol 1952; 172: 162–168.

    Article  Google Scholar 

  76. Mendelson J, Chorover SL . Lateral hypothalamic stimulation in satiated rats: T-maze learning for food. Science 1965; 149: 559–561.

    Article  CAS  PubMed  Google Scholar 

  77. Mogenson G . Stability and modification of consummatory behaviors elicited by electrical stimulation of the hypothalamus. Physiol Behav 1971; 6: 255–260.

    Article  CAS  PubMed  Google Scholar 

  78. Stephan FK, Valenstein ES, Zucker I . Copulation and eating during electrical stimulation of the rat hypothalamus. Physiol Behav 1971; 7: 587–593.

    Article  CAS  PubMed  Google Scholar 

  79. Schallert T . Reactivity to food odors during hypothalamic stimulation in rats not experienced with stimulation-induced eating. Physiol Behav 1977; 18: 1061–1066.

    Article  CAS  PubMed  Google Scholar 

  80. Halperin R, Gatchalian CL, Adachi TJ, Carter J, Leibowitz SF . Relationship of adrenergic and electrical brain stimulation induced feeding responses. Pharmacol Biochem Behav 1983; 18: 415–422.

    Article  CAS  PubMed  Google Scholar 

  81. Mendelson J . Lateral hypothalamic stimulation in satiated rats: the rewarding effects of self-induced drinking. Science 1967; 157: 1077–1079.

    Article  CAS  PubMed  Google Scholar 

  82. Anand BK, Brobeck JR . Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 1951; 77: 323–325.

    Article  CAS  PubMed  Google Scholar 

  83. Sani S, Jobe K, Smith A, Kordower JH, Bakay RA . Deep brain stimulation for treatment of obesity in rats. J Neurosurg 2007; 107: 809–813.

    Article  PubMed  Google Scholar 

  84. Halpern CH, Tekriwal A, Santollo J, Keating JG, Wolf JA, Daniels D et al. Amelioration of binge eating by nucleus accumbens shell deep brain stimulation in mice involves D2 receptor modulation. J Neurosci 2013; 33: 7122–7129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Doucette W, Khokhar J, Green A . Nucleus accumbens deep brain stimulation in a rat model of binge eating. Transl Psychiatry 2015; 5: e695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang C, Wei N-L, Wang Y, Wang X, Zhang J-G, Zhang K . Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission. Neurosci Lett 2015; 589: 1–6.

    Article  CAS  PubMed  Google Scholar 

  87. Van Der Plasse G, Schrama R, Van Seters SP, Vanderschuren LJ, Westenberg HG . Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS ONE 2012; 7: e33455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luigjes J, Van Den Brink W, Feenstra M, Van den Munckhof P, Schuurman P, Schippers R et al. Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry 2012; 17: 572–583.

    Article  CAS  PubMed  Google Scholar 

  89. Salling MC, Martinez D . Brain stimulation in addiction. Neuropsychopharmacology 2016; 41: 2798–2809.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Müller UJ, Voges J, Steiner J, Galazky I, Heinze HJ, Möller M et al. Deep brain stimulation of the nucleus accumbens for the treatment of addiction. Ann N Y Acad Sci 2013; 1282: 119–128.

    Article  CAS  PubMed  Google Scholar 

  91. Kuhn J, Lenartz D, Huff W, Lee S, Koulousakis A, Klosterkoetter J et al. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J Neurol Neurosurg Psychiatry 2007; 78: 1152–1153.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mantione M, van de Brink W, Schuurman PR, Denys D . Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery 2010; 66: E218.

    Article  PubMed  Google Scholar 

  93. Quaade F, Yærnet K, Larsson S . Stereotaxic stimulation and electrocoagulation of the lateral hypothalamus in obese humans. Acta Neurochir 1974; 30: 111–117.

    Article  CAS  PubMed  Google Scholar 

  94. Franzini A, Ferroli P, Leone M, Bussone G . Hypothalamic deep brain stimulation for the treatment of chronic cluster headaches: a series report. Neuromodulation 2004; 7: 1–8.

    Article  PubMed  Google Scholar 

  95. Franzini A, Leone M, Messina G, Cordella R, Marras C, Bussone G et al. Neuromodulation in treatment of refractory headaches. Neurol Sci 2008; 29: 65.

    Article  Google Scholar 

  96. Leone M, Proietti Cecchini A . Deep brain stimulation in headache. Cephalalgia 2016; 36: 1143–1148.

    Article  PubMed  Google Scholar 

  97. Leone M . Deep brain stimulation in headache. Lancet Neurol 2006; 5: 873–877.

    Article  PubMed  Google Scholar 

  98. Whiting DM, Tomycz ND, Bailes J, de Jonge L, Lecoultre V, Wilent B et al. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism: clinical article. J Neurosurg 2013; 119: 56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Harat M, Rudaś M, Zieliński P, Birska J, Sokal P . Nucleus accumbens stimulation in pathological obesity. Neurol Neurochir Pol 2016; 50: 207–210.

    Article  PubMed  Google Scholar 

  100. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Deep Brain Stimulation for the Treatment of Obesity. Available from https://clinicaltrials.gov/ct2/show/NCT01512134.

  101. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Deep Brain Stimulation for Human Morbid Obesity (BLESS). Available from https://clinicaltrials.gov/ct2/show/NCT02232919.

  102. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Deep Brain Stimulation for the Treatment of Obesity in Patients With Prader-Willi Syndrome (DBSPW). Available from https://clinicaltrials.gov/ct2/show/NCT02297022.

  103. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). PINS Stimulator System for Deep Brain Stimulation to Treat Obesity. Available from https://clinicaltrials.gov/ct2/show/NCT02254395.

  104. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). DBS of the Third Ventricle for Cluster Headache and Obesity (DBS V3). Available from https://clinicaltrials.gov/ct2/show/NCT02782533.

  105. Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA 2014; 312: 915–922.

    Article  CAS  PubMed  Google Scholar 

  106. Shikora SA, Toouli J, Herrera MF, Kulseng B, Brancatisano R, Kow L et al. Intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes Surg 2016; 26: 1021–1028.

    Article  PubMed  Google Scholar 

  107. Shikora SA, Wolfe BM, Apovian CM, Anvari M, Sarwer DB, Gibbons RD et al. Sustained weight loss with vagal nerve blockade but not with sham: 18-month results of the ReCharge trial. J Obes 2015; 2015: 365604.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Caplan A . Denying autonomy in order to create it: the paradox of forcing treatment upon addicts. Addiction (Abingdon, England) 2008; 103: 1919–1921.

    Article  Google Scholar 

  109. Bikson M, Bestmann S, Edwards D . Neuroscience: transcranial devices are not playthings. Nature 2013; 501: 167–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tomaszewski KJ, Holloway RG . Deep brain stimulation in the treatment of Parkinson’s disease a cost-effectiveness analysis. Neurology 2001; 57: 663–671.

    Article  CAS  PubMed  Google Scholar 

  111. Meissner W, Schreiter D, Volkmann J, Trottenberg T, Schneider G-H, Sturm V et al. Deep brain stimulation in late stage Parkinson’s disease: a retrospective cost analysis in Germany. J Neurol 2005; 252: 218–223.

    Article  PubMed  Google Scholar 

  112. Fenoy AJ, Simpson RK Jr . Risks of common complications in deep brain stimulation surgery: management and avoidance: clinical article. J Neurosurg 2014; 120: 132–139.

    Article  PubMed  Google Scholar 

  113. Priori A, Hallett M, Rothwell JC . Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation 2009; 2: 241–245.

    Article  PubMed  Google Scholar 

  114. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Group SoTC. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120: 2008–2039.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Machii K, Cohen D, Ramos-Estebanez C, Pascual-Leone A . Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin Neurophysiol 2006; 117: 455–471.

    Article  PubMed  Google Scholar 

  116. Ghani S, Vilensky J, Turner B, Tubbs R, Loukas M . Meta-analysis of vagus nerve stimulation treatment for epilepsy: correlation between device setting parameters and acute response. Child's Nerv Syst 2015; 31: 2291–2304.

    Article  CAS  Google Scholar 

  117. Ben-Menachem E . Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol 2001; 18: 415–418.

    Article  CAS  PubMed  Google Scholar 

  118. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M . Health and economic burden of the projected obesity trends in the USA and the UK. Lancet (London, England) 2011; 378: 815–825.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Deutsche Forschungsgemeinschaft (SFB TR134, project C02) awarded to TFM and VMT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C H Göbel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göbel, C., Tronnier, V. & Münte, T. Brain stimulation in obesity. Int J Obes 41, 1721–1727 (2017). https://doi.org/10.1038/ijo.2017.150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.150

This article is cited by

Search

Quick links