Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bariatric Surgery

The effects of weight loss due to gastric banding and lifestyle modification on red blood cell aggregation and deformability in severe obese subjects

Abstract

Objective:

To investigate the changes in the aggregation index (AI) and the elongation index (EI), in severe obese subjects (MbObS) undergoing laparoscopic adjustable gastric banding (LAGB). AI and EI are measured by Laser assisted Optical Rotational Red Cell Analyzer (LORCA) and are markers of erythrocyte aggregation and deformability, respectively.

Design and subjects:

Before, 3 and 6 months after LAGB plus lifestyle changes (Mediterranean diet plus daily moderate exercise), we evaluated AI, EI, body mass index (BMI), total (ToT) cholesterol (Chol), high-density lipoprotein (HDL)-Chol, low-density lipoprotein (LDL)-Chol, triglycerides and fasting glucose and insulin levels in 20 MbObS. The Student's t-test was used for comparisons between independent groups and the analysis of variance to assess differences in AI and EI at the 3 time points. Pearson's correlation coefficient was used to assess correlation among continuous variables and multiple linear regression analysis to assess predictive factors for AI and EI changes.

Results:

BMI and all blood parameters showed a statistically significant decline 3 and 6 months after LAGB as compared with basal, except for EI and HDL-Chol that significantly increased. Stepwise selection of predictors shows that at 3 and 6 months, EI values depended on HDL-Chol values at the same time point. In the EI model, blood glucose was also statistically significant at 6 months.

Conclusion:

Our data show a significant improvement in EI after LAGB-induced weight loss, which correlates with an improved lipid pattern and support the idea that the rapid weight loss induced by LAGB plus lifestyle changes might reduce the thromboembolic risk and the high mortality risk found in MbObS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Dintenfass L . Autoregulation of blood viscosity in health and disease. Vasc Surg 1980; 14: 227–237.

    Article  Google Scholar 

  2. Le Devehat C, Khodabandehlou T, Dougny M . Hemorheological parameters in isolated obesity. Diabete Metab 1992; 18: 43–47.

    CAS  PubMed  Google Scholar 

  3. Wiewiora M, Sosada K, Wylezol M, Slowinska L, Zurawinski W . Red blood cell aggregation and deformability among patients qualified for bariatric surgery. Obes Surg 2007; 17: 365–371.

    Article  Google Scholar 

  4. Cicco G, Pirelli A . Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension. Clin Hemorheol Microcirc 1999; 21: 169–177.

    CAS  PubMed  Google Scholar 

  5. Cicco G, Fanelli V, Cicco S, Iacoviello M, Favale S . Could dilated cardiomyopathy alter peripheral microcirculation and blood rheology? Adv Exp Med Biol 2010; 662: 41–47.

    Article  Google Scholar 

  6. LeDevehat C, Vimeux M, Bondoux G, Bertrand A . Red blood cell aggregation and disaggregation in diabetes. Clin Hemorheol Microcirc 1989; 9: 845–854.

    Article  Google Scholar 

  7. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH . The disease burden associated with overweight and obesity. JAMA 1999; 282: 1523–1529.

    Article  CAS  Google Scholar 

  8. Deitel M . The development of general surgical operation and weight-loss operation. Obes Surg 1996; 6: 206–213.

    Article  CAS  Google Scholar 

  9. Mason EE, Tang S, Renquist KE . A decade of change in obesity surgery. Obes Surg 1997; 7: 189–197.

    Article  CAS  Google Scholar 

  10. Hardeman MR, Dobbe JGG, Ince C . TheLaser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer. Clin Hemorheol Microcirc 2001; 25: 1–11.

    CAS  PubMed  Google Scholar 

  11. Hardeman MR, Goedhart PT, Dobbe JGG, Lettinga KP . Laser-assisted Optical Rotational Cell Analyser (LORCA); I. A new instrument for measurement of various structural hemorheological parameters. Clin-Hemorheol-Microcirc 1994; 14: 605–618.

    Google Scholar 

  12. Baskurt OK, Meiselman HJ . Blood rheology and hemodynamics. Semin Thromb Hemost 2003; 29: 435–450.

    Article  CAS  Google Scholar 

  13. Cokelet GR . Rheology and hemodynamics. Ann Rev Physiol 1980; 42: 311–324.

    Article  CAS  Google Scholar 

  14. Jan KM, Chien S, Bigger JT . Observation on blood viscosity changes after acute myocardial infarction. Circulation 1975; 51: 1079–1084.

    Article  CAS  Google Scholar 

  15. Fisher M, Meiselman HJ . Haemorheological factors in cerebral ischemia. Stroke 1991; 22: 1164–1169.

    Article  CAS  Google Scholar 

  16. Coull BM, Beamer N, De Garmo P, Sexton G, Nordt F, Knox R et al. Chronic blood hyperviscosity in subject with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke 1991; 22: 162–168.

    Article  CAS  Google Scholar 

  17. Dintenfass L . Autoregulation of blood viscosity in health and disease. Vasc surg 1980; 14: 227–237.

    Article  Google Scholar 

  18. Usami S . Development of hemorheology:perspective in instrumentation development. Clin Hemorheol Microcirc 2000; 23: 77–83.

    CAS  PubMed  Google Scholar 

  19. Valensi P, Paries J, Maheo P, Gaudey F, Attali JR . Erythrocyte rheological changes in obese patients: influence of hyperinsulinism. Int J Obes Relate Metab Disord 1996; 20: 814–819.

    CAS  Google Scholar 

  20. Samocha-Bonet D, Ben-Ami R, Shapira I, Shenkerman G, Abu-Abeid S, Stern N et al. Flow-resistant red blood cell aggregation in morbid obesity. Int J Obes Relat Metab Disord 2004; 28: 1528–1534.

    Article  CAS  Google Scholar 

  21. Poggi M, Palareti G, Biagi R, Legnani C, Parenti M, Babini AC et al. Prolonged very low calorie diet in highly obese subjects reduces plasma viscosità andred cell aggregation but not fibrinogen. Int J Obes Relat Metab Disord 1994; 18: 490–496.

    CAS  PubMed  Google Scholar 

  22. Fanari P, Somazzi R, Nasrawi F, Ticozzelli P, Grugni G, Agosti R et al. Haemorheological changes in obese adolescent after short-term diet. Int J Obes Relat Metab Disord 1993; 17: 487–494.

    CAS  Google Scholar 

  23. Solá E, Vayá A, Corella D, Santaolaria ML, España F, Estellés A et al. Erythrocyte hyperaggregation in obesity: determining factors and weight loss influence. Obesity (Silver Spring) 2007; 15: 2128–2134.

    Article  Google Scholar 

  24. Wiewiora M, Slowinska L, Wylezol M, Pardela M, Kobielski A . Rheological properties of erythrocytes in patients suffering from morbid obesity. Examination with LORCA device. Clin Hemorheol Microcirc 2006; 34: 499–506.

    PubMed  Google Scholar 

  25. Sloop GD, Garber DW . The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci (Lond) 1997; 92: 473–479.

    Article  CAS  Google Scholar 

  26. Crowley JP, Metzger J, Assaf A, Carleton RC, Merrill E, Valeri CR . Low density lipoprotein cholesterol and whole blood viscosity. Ann Clin Lab Sci 1994; 24: 533–541.

    CAS  PubMed  Google Scholar 

  27. Cicha I, Susnki I, Tateiski N, Maeda M . Enhancement of red blood cell aggregation by plasma triglycerides. Clin Hemorheol Microcirc 2001; 24: 247–255.

    CAS  PubMed  Google Scholar 

  28. Craveri A, Tornaghi G, Paganardi L, Ranieri R, Leonardi G, Di Bella M . Hemorrheologic disorders in obese patients. Study of the viscosity of the blood, erythrocytes, plasma, fibrinogen and the erythrocyte filtration index. Minerva Med 1987; 78: 899–906.

    CAS  PubMed  Google Scholar 

  29. Busetto L, Mirabelli D, Petroni ML, Mazza M, Favretti F, Segato G et al. Comparative long-term mortalità after laparoscopic adjustable gastric banding versus non-surgical controls. Surg Obes Relat Dis 2007; 3: 496–502.

    Article  Google Scholar 

  30. Raebel MA, Malone DC, Conner DA, Xu S, Porter JA, Lanthy FA . Health services use and health care cost of obese and nonobese individuals. Arch Intern Med 2004; 164: 2135–2140.

    Article  Google Scholar 

  31. Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW . Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation 2008; 117: 93–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Garruti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capuano, P., Catalano, G., Garruti, G. et al. The effects of weight loss due to gastric banding and lifestyle modification on red blood cell aggregation and deformability in severe obese subjects. Int J Obes 36, 342–347 (2012). https://doi.org/10.1038/ijo.2011.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.94

Keywords

This article is cited by

Search

Quick links