Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo

Subjects

Abstract

Direct therapeutic gene transfer is a promising tool to treat articular cartilage defects. Here, we tested the ability of an recombinant adeno-associated virus (rAAV) insulin-like growth factor I (IGF-I) vector to improve the early repair of cartilage lesions in vivo. The vector was administered for 3 weeks in osteochondral defects created in the knee joints of rabbits compared with control (lacZ) treatment and in cells that participate in the repair processes (mesenchymal stem cells, chondrocytes). Efficient IGF-I expression was observed in the treated lesions and in isolated cells in vitro. rAAV-mediated IGF-I overexpression was capable of stimulating the biologic activities (proliferation, matrix synthesis) both in vitro and in vivo. IGF-I treatment in vivo was well tolerated, revealing significant improvements of the repair capabilities of the entire osteochondral unit. IGF-I overexpression delayed terminal differentiation and hypertrophy in the newly formed cartilage, possibly due to contrasting effects upon the osteogenic expression of RUNX2 and β-catenin and to stimulating effects of this factor on the parathyroid hormone/parathyroid hormone-related protein pathway in this area. Production of IGF-I improved the reconstitution of the subchondral bone layer in the defects, showing increased RUNX2 expression levels in this zone. These findings show the potential of directly applying therapeutic rAAVs to treat cartilage lesions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Guo X, Zheng Q, Yang S, Shao Z, Yuan Q, Pan Z et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater 2006; 1: 206–215.

    Article  CAS  PubMed  Google Scholar 

  2. Ivkovic A, Pascher A, Hudetz D, Maticic D, Jelic M, Dickinson L et al. Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Therapy 2010; 17: 779–789.

    Article  CAS  PubMed  Google Scholar 

  3. Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR . Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Therapy 2007; 14: 804–813.

    Article  CAS  PubMed  Google Scholar 

  4. Evans CH, Liu FJ, Glatt V, Hoyland JA, Kirker-Head C, Walsh A et al. Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur Cell Mater 2009; 18: 96–111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hidaka C, Goodrich LR, Chen CT, Warren RF, Crystal RG, Nixon AJ . Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res 2003; 21: 573–583.

    Article  CAS  PubMed  Google Scholar 

  6. Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 2006; 54: 433–442.

    Article  CAS  PubMed  Google Scholar 

  7. Mason JM, Breitbart AS, Barcia M, Porti D, Pergolizzi RG, Grande DA . Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res 2000; 379 (Suppl):S171–S178.

    Article  Google Scholar 

  8. Menendez MI, Clark DJ, Carlton M, Flanigan DC, Jia G, Sammet S et al. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis Cartilage 2011; 19: 1066–1075.

    Article  CAS  PubMed  Google Scholar 

  9. Vogt S, Wexel G, Tischer T, Schillinger E, Ueblacker P, Wagner B et al. The influence of the stable expression of BMP2 in fibrin clots on the remodelling and repair of osteochondral defects. Biomaterials 2009; 30: 2385–2392.

    Article  CAS  PubMed  Google Scholar 

  10. Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD et al. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 2005; 12: 229–238.

    Article  CAS  PubMed  Google Scholar 

  11. Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D et al. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med 2006; 8: 100–111.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu S, Zhang B, Man C, Ma Y, Liu X, Hu J . Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on repair of articular cartilage defect in rabbits. Cell Transplant 2013; 23: 715–727.

    Article  Google Scholar 

  13. Cao L, Yang F, Liu G, Yu D, Li H, Fan Q et al. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 2011; 32: 3910–3920.

    Article  CAS  PubMed  Google Scholar 

  14. Cucchiarini M, Orth P, Madry H . Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J Mol Med (Berl) 2013; 91: 625–636.

    Article  CAS  Google Scholar 

  15. Lee JM, Im GI . SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials 2012; 33: 2016–2024.

    Article  CAS  PubMed  Google Scholar 

  16. Liu TM, Guo XM, Tan HS, Hui JH, Lim B, Lee EH . Zinc-finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair. Arthritis Rheum 2011; 63: 2711–2720.

    Article  CAS  PubMed  Google Scholar 

  17. Katayama R, Wakitani S, Tsumaki N, Morita Y, Matsushita I, Gejo R et al. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology 2004; 43: 980–985.

    Article  CAS  PubMed  Google Scholar 

  18. Klinger P, Surmann-Schmitt C, Brem M, Swoboda B, Distler JH, Carl HD et al. Chondromodulin 1 stabilizes the chondrocyte phenotype and inhibits endochondral ossification of porcine cartilage repair tissue. Arthritis Rheum 2011; 63: 2721–2731.

    Article  CAS  PubMed  Google Scholar 

  19. Fortier LA, Mohammed HO, Lust G, Nixon AJ . Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 2002; 84: 276–288.

    Article  CAS  PubMed  Google Scholar 

  20. Holland TA, Bodde EW, Cuijpers VM, Baggett LS, Tabata Y, Mikos AG et al. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis Cartilage 2007; 15: 187–197.

    Article  CAS  PubMed  Google Scholar 

  21. Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y et al. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Rel 2013; 168: 166–178.

    Article  CAS  Google Scholar 

  22. Nixon AJ, Fortier LA, Williams J, Mohammed H . Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res 1999; 17: 475–487.

    Article  CAS  PubMed  Google Scholar 

  23. Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ . Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br 2007; 89: 672–685.

    Article  CAS  PubMed  Google Scholar 

  24. Leng P, Ding CR, Zhang HN, Wang YZ . Reconstruct large osteochondral defects of the knee with hIGF-1 gene enhanced mosaicplasty. Knee 2012; 19: 804–811.

    Article  PubMed  Google Scholar 

  25. Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Therapy 2005; 12: 1171–1179.

    Article  CAS  PubMed  Google Scholar 

  26. Madry H, Kaul G, Zurakowski D, Vunjak-Novakovic G, Cucchiarini M . Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater 2013; 25: 229–247.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cucchiarini M, Ekici M, Schetting S, Kohn D, Madry H . Metabolic activities and chondrogenic differentiation of human mesenchymal stem cells following recombinant adeno-associated virus-mediated gene transfer and overexpression of fibroblast growth factor 2. Tissue Eng Part A 2011; 17: 1921–1933.

    Article  CAS  PubMed  Google Scholar 

  28. Venkatesan JK, Ekici M, Madry H, Schmitt G, Kohn D, Cucchiarini M . SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Res Ther 2012; 3: 22–36.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Venkatesan JK, Rey-Rico A, Schmitt G, Wezel A, Madry H, Cucchiarini M . rAAV-mediated overexpression of TGF-beta stably restructures human osteoarthritic articular cartilage in situ. J Transl Med 2013; 11: 211–224.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Weimer A, Madry H, Venkatesan JK, Schmitt G, Frisch J, Wezel A et al. Benefits of rAAV-mediated IGF-I overexpression for the long-term reconstruction of human osteoarthritic cartilage by modulation of the IGF-I axis. Mol Med 2012; 18: 346–358.

    Article  CAS  PubMed  Google Scholar 

  31. Sellers RS, Peluso D, Morris EA . The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1997; 79: 1452–1463.

    Article  CAS  PubMed  Google Scholar 

  32. Trippel SB, Corvol MT, Dumontier MF, Rappaport R, Hung HH, Mankin HJ . Effect of somatomedin-C/insulin-like growth factor I and growth hormone on cultured growth plate and articular chondrocytes. Pediatr Res 1989; 25: 76–82.

    Article  CAS  PubMed  Google Scholar 

  33. Kawamura K, Chu CR, Sobajima S, Robbins PD, Fu FH, Izzo NJ et al. Adenoviral-mediated transfer of TGF-beta1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures. Exp Hematol 2005; 33: 865–872.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Palmer GD, Steinert A, Pascher A, Gouze E, Gouze JN, Betz O et al. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol Ther 2005; 12: 219–228.

    Article  CAS  PubMed  Google Scholar 

  35. Uebersax L, Merkle HP, Meinel L . Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Rel 2008; 127: 12–21.

    Article  CAS  Google Scholar 

  36. Govoni KE, Lee SK, Chung YS, Behringer RR, Wergedal JE, Baylink DJ et al. Disruption of insulin-like growth factor-I expression in type IIalphaI collagen-expressing cells reduces bone length and width in mice. Physiol Genom 2007; 30: 354–362.

    Article  CAS  Google Scholar 

  37. Montaseri A, Busch F, Mobasheria A, Buhrmann C, Aldinger C, Rad JS et al. IGF-1 and PDGF-bb suppress IL-1beta-induced cartilage degradation through down-regulation of NF-kappaB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One 2011; 6: e28663–e28677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Renard E, Porée B, Chadjichristos C, Kypriotou M, Maneix L, Bigot N et al. Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. J Mol Med (Berl) 2012; 90: 649–666.

    Article  CAS  Google Scholar 

  39. Seifarth C, Csaki C, Shakibaei M . Anabolic actions of IGF-I and TGF-beta1 on interleukin-1beta-treated human articular chondrocytes: evaluation in two and three dimensional cultures. Histol Histopathol 2009; 24: 1245–1262.

    CAS  PubMed  Google Scholar 

  40. Shakibaei M, Seifarth C, John T, Rahmanzadeh M, Mobasheri A . IGF-I extends the chondrogenic potential of human articular chondrocytes in vitro: molecular association between Sox9 and Erk1/2. Biochem Pharmacol 2006; 72: 1382–1395.

    Article  CAS  PubMed  Google Scholar 

  41. Böhme K, Conscience-Egli M, Tschan T, Winterhalter KH, Bruckner P . Induction of proliferation or hypertrophy of chondrocytes in serum-free culture: the role of insulin-like growth factor-I, insulin, or thyroxine. J Cell Biol 1992; 116: 1035–1042.

    Article  PubMed  Google Scholar 

  42. Hie M, Iitsuka N, Otsuka T, Tsukamoto I . Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Med 2011; 28: 455–462.

    CAS  PubMed  Google Scholar 

  43. Jiang J, Lichtler AC, Gronowicz GA, Adams DJ, Clark SH, Rosen CJ et al. Transgenic mice with osteoblast-targeted insulin-like growth factor-I show increased bone remodeling. Bone 2006; 39: 494–504.

    Article  CAS  PubMed  Google Scholar 

  44. Koch H, Jadlowiec JA, Campbell PG . Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev 2005; 14: 621–631.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 2000; 141: 2674–2682.

    Article  CAS  PubMed  Google Scholar 

  46. Richard-Parpaillon L, Heligon C, Chesnel F, Boujard D, Philpott A . The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev Biol 2002; 244: 407–417.

    Article  CAS  PubMed  Google Scholar 

  47. Morisset S, Frisbie DD, Robbins PD, Nixon AJ, McIlwraith CW . IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin Orthop Relat Res 2007; 462: 221–228.

    Article  PubMed  Google Scholar 

  48. Cucchiarini M, Terwilliger EF, Kohn D, Madry H . Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer. J Cell Mol Med 2009; 13: 2476–2488.

    Article  PubMed  Google Scholar 

  49. Samulski RJ, Chang LS, Shenk T . A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 1987; 61: 3096–3101.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Samulski RJ, Chang LS, Shenk T . Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989; 63: 3822–3828.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank RJ Samulski (The Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA), X Xiao (The Gene Therapy Center, University of Pittsburgh, Pittsburgh, PA, USA) and EF Terwilliger (Harvard Institutes of Medicine, Beth Israel Deaconess and Harvard Medical School, Boston, MA, USA) for providing genomic AAV-2 plasmid clones and the 293 cell line and AJ D’Ercole and B Moats-Staats (Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA) for the human IGF-IcDNA. We also thank G Schmitt (Center of Experimental Orthopaedics, Homburg/Saar, Germany) for technical assistance, D Zurakowski (Children's Hospital, Orthopaedic Surgery and Biostatistics, Harvard Medical School, Boston, MA, USA) for support in the statistical analyses and D Lajeunesse (Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Canada) and MD Menger (Institute for Experimental Surgery, Homburg/Saar, Germany) for helpful discussions. This work was supported by grants from the German Research Society (DFG) and the German Osteoarthritis Foundation (DAH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Cucchiarini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cucchiarini, M., Madry, H. Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther 21, 811–819 (2014). https://doi.org/10.1038/gt.2014.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.58

This article is cited by

Search

Quick links