Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Retinal transduction profiles by high-capacity viral vectors

Abstract

Retinal gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. However, the limited cargo capacity of AAV prevents their use for therapy of those inherited retinopathies (IRs) due to mutations in large (>5 kb) genes. Viral vectors derived from adenovirus (Ad), lentivirus (LV) and herpes virus (HV) can package large DNA sequences, but do not target efficiently retinal photoreceptors (PRs) where the majority of genes responsible for IRs are expressed. Here, we have evaluated the mouse retinal transduction profiles of vectors derived from 16 different Ad serotypes, 7 LV pseudotypes and from a bovine HV. Most of the vectors tested transduced efficiently the retinal pigment epithelium. We found that LV-GP64 tends to transduce more PRs than the canonical LV-VSVG, albeit this was restricted to a narrow region. We observed more extensive PR transduction with HdAd1, 2 and 5/F35++ than with LV, although none of them outperformed the canonical HdAd5 or matched the extension of PR transduction achieved with AAV2/8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cideciyan AV Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res 2010; 29: 398–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Daiger SP, Sullivan LS, Bowne SJ . RetNet Retinal Information Network, 2014.

  3. Vandenberghe LH, Bell P, Maguire AM, Xiao R, Hopkins TB, Grant R et al. AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS One 2013; 8: e53463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007; 81: 11372–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mussolino C, della Corte M, Rossi S, Viola F, Di Vicino U, Marrocco E et al. AAV-mediated photoreceptor transduction of the pig cone-enriched retina. Gene Ther 2011; 18: 637–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med 2011; 3: 88ra54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manfredi A, Marrocco E, Puppo A, Cesi G, Sommella A, Della Corte M et al. Combined rod and cone transduction by adeno-associated virus 2/8. Hum Gene Ther 2013; 24: 982–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li T, Adamian M, Roof DJ, Berson EL, Dryja TP, Roessler BJ et al. In vivo transfer of a reporter gene to the retina mediated by an adenoviral vector. Invest Ophthalmol Vis Sci 1994; 35: 2543–2549.

    CAS  PubMed  Google Scholar 

  9. Bennett J, Wilson J, Sun D, Forbes B, Maguire A Adenovirus vector-mediated in vivo gene transfer into adult murine retina. Invest Ophthalmol Vis Sci 1994; 35: 2535–2542.

    CAS  PubMed  Google Scholar 

  10. Kreppel F, Luther TT, Semkova I, Schraermeyer U, Kochanek S Long-term transgene expression in the RPE after gene transfer with a high-capacity adenoviral vector. Invest Ophthalmol Vis Sci 2002; 43: 1965–1970.

    PubMed  Google Scholar 

  11. Brunetti-Pierri N, Auricchio A . Gene Therapy of Human Inherited Diseases. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, Scriver CR, Childs B, Sly WS, Bunz F, Gibson KM, Mitchell G (eds). The Online Metabolic & Molecular Bases of Inherited Disease. McGraw-Hill: New York. Part 2: Perspectives. Chapter 5.2: Gene Therapy of Human Inherited Diseases. doi:10.1036/ommbid.12.

  12. Bainbridge JW, Stephens C, Parsley K, Demaison C, Halfyard A, Thrasher AJ et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 2001; 8: 1665–1668.

    Article  CAS  PubMed  Google Scholar 

  13. Bemelmans AP, Bonnel S, Houhou L, Dufour N, Nandrot E, Helmlinger D et al. Retinal cell type expression specificity of HIV-1-derived gene transfer vectors upon subretinal injection in the adult rat: influence of pseudotyping and promoter. J Gene Med 2005; 7: 1367–1374.

    Article  CAS  PubMed  Google Scholar 

  14. Miyoshi H, Takahashi M, Gage FH, Verma IM Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 1997; 94: 10319–10323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pang J, Cheng M, Haire SE, Barker E, Planelles V, Blanks JC Efficiency of lentiviral transduction during development in normal and rd mice. Mol Vis 2006; 12: 756–767.

    CAS  PubMed  Google Scholar 

  16. Miyazaki M, Ikeda Y, Yonemitsu Y, Goto Y, Sakamoto T, Tabata T et al. Simian lentiviral vector-mediated retinal gene transfer of pigment epithelium-derived factor protects retinal degeneration and electrical defect in Royal College of Surgeons rats. Gene Ther 2003; 10: 1503–1511.

    Article  CAS  PubMed  Google Scholar 

  17. Ikeda Y, Yonemitsu Y, Miyazaki M, Kohno R, Murakami Y, Murata T et al. Stable retinal gene expression in nonhuman primates via subretinal injection of SIVagm-based lentiviral vectors. Hum Gene Ther 2009; 20: 573–579.

    Article  CAS  PubMed  Google Scholar 

  18. Derksen TA, Sauter SL, Davidson BL . Feline immunodeficiency virus vectors. Gene transfer to mouse retina following intravitreal injection. J Gene Med 2002; 4: 463–469.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng L, Toyoguchi M, Looney DJ, Lee J, Davidson MC, Freeman WR Efficient gene transfer to retinal pigment epithelium cells with long-term expression. Retina 2005; 25: 193–201.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Binley K, Widdowson P, Loader J, Kelleher M, Iqball S, Ferrige G et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci 2013; 54: 4061–4071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashimoto T, Gibbs D, Lillo C, Azarian SM, Legacki E, Zhang XM et al. Lentiviral gene replacement therapy of retinas in a mouse model for Usher syndrome type 1B. Gene Ther 2007; 14: 584–594.

    Article  CAS  PubMed  Google Scholar 

  22. Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther 2008; 15: 1311–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gruter O, Kostic C, Crippa SV, Perez MT, Zografos L, Schorderet DF et al. Lentiviral vector-mediated gene transfer in adult mouse photoreceptors is impaired by the presence of a physical barrier. Gene Ther 2005; 12: 942–947.

    Article  CAS  PubMed  Google Scholar 

  24. Pang J, Cheng M, Stevenson D, Trousdale MD, Dorey CK, Blanks JC Adenoviral-mediated gene transfer to retinal explants during development and degeneration. Exp Eye Res 2004; 79: 189–201.

    Article  CAS  PubMed  Google Scholar 

  25. Fraefel C, Mendes-Madeira A, Mabon O, Lefebvre A, Le Meur G, Ackermann M et al. In vivo gene transfer to the rat retina using herpes simplex virus type 1 (HSV-1)-based amplicon vectors. Gene Ther 2005; 12: 1283–1288.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Bergelson JM Adenovirus receptors. J Virol 2005; 79: 12125–12131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cashman SM, McCullough L, Kumar-Singh R Improved retinal transduction in vivo and photoreceptor-specific transgene expression using adenovirus vectors with modified penton base. Mol Ther 2007; 15: 1640–1646.

    Article  CAS  PubMed  Google Scholar 

  28. Sweigard JH, Cashman SM, Kumar-Singh R Adenovirus vectors targeting distinct cell types in the retina. Invest Ophthalmol Vis Sci 2010; 51: 2219–2228.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Von Seggern DJ, Aguilar E, Kinder K, Fleck SK, Gonzalez Armas JC, Stevenson SC et al. In vivo transduction of photoreceptors or ciliary body by intravitreal injection of pseudotyped adenoviral vectors. Mol Ther 2003; 7: 27–34.

    Article  CAS  PubMed  Google Scholar 

  30. Mallam JN, Hurwitz MY, Mahoney T, Chevez-Barrios P, Hurwitz RL Efficient gene transfer into retinal cells using adenoviral vectors: dependence on receptor expression. Invest Ophthalmol Vis Sci 2004; 45: 1680–1687.

    Article  PubMed  Google Scholar 

  31. Zhang SH, Wu JH, Wu XB, Dong XY, Liu XJ, Li CY et al. Distinctive gene transduction efficiencies of commonly used viral vectors in the retina. Curr Eye Res 2008; 33: 81–90.

    Article  CAS  PubMed  Google Scholar 

  32. Guse K, Suzuki M, Sule G, Bertin TK, Tyynismaa H, Ahola-Erkkila S et al. Capsid-modified adenoviral vectors for improved muscle-directed gene therapy. Hum Gene Ther 2012; 23: 1065–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shayakhmetov DM, Li ZY, Gaggar A, Gharwan H, Ternovoi V, Sandig V et al. Genome size and structure determine efficiency of postinternalization steps and gene transfer of capsid-modified adenovirus vectors in a cell-type-specific manner. J Virol 2004; 78: 10009–10022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takayama K, Reynolds PN, Short JJ, Kawakami Y, Adachi Y, Glasgow JN et al. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism. Virology 2003; 309: 282–293.

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Liu Y, Li Z, Tuve S, Stone D, Kalyushniy O et al. In vitro and in vivo properties of adenovirus vectors with increased affinity to CD46. J Virol 2008; 82: 10567–10579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bramson JL, Grinshtein N, Meulenbroek RA, Lunde J, Kottachchi D, Lorimer IA et al. Helper-dependent adenoviral vectors containing modified fiber for improved transduction of developing and mature muscle cells. Hum Gene Ther 2004; 15: 179–188.

    Article  CAS  PubMed  Google Scholar 

  37. Shayakhmetov DM, Eberly AM, Li ZY, Lieber A Deletion of penton RGD motifs affects the efficiency of both the internalization and the endosome escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs. J Virol 2005; 79: 1053–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khare R, May SM, Vetrini F, Weaver EA, Palmer D, Rosewell A et al. Generation of a Kupffer cell-evading adenovirus for systemic and liver-directed gene transfer. Mol Ther 2011; 19: 1254–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Naldini L Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 1998; 9: 457–463.

    Article  CAS  PubMed  Google Scholar 

  40. Tang J, Yang T, Ghosh HP, Geller AI Helper virus-free HSV-1 vectors packaged both in the presence of VSV G protein and in the absence of HSV-1 glycoprotein B support gene transfer into neurons in the rat striatum. J Neurovirol 2001; 7: 548–555.

    Article  CAS  PubMed  Google Scholar 

  41. Palmer D, Ng P Improved system for helper-dependent adenoviral vector production. Mol Ther 2003; 8: 846–852.

    Article  CAS  PubMed  Google Scholar 

  42. Colloca S, Barnes E, Folgori A, Ammendola V, Capone S, Cirillo A et al. Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci Transl Med 2012; 4: 115ra2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Auricchio A, Kobinger G, Anand V, Hildinger M, O'Connor E, Maguire AM et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001; 10: 3075–3081.

    Article  CAS  PubMed  Google Scholar 

  44. Greenberg KP, Geller SF, Schaffer DV, Flannery JG Targeted transgene expression in muller glia of normal and diseased retinas using lentiviral vectors. Invest Ophthalmol Vis Sci 2007; 48: 1844–1852.

    Article  PubMed  Google Scholar 

  45. Duisit G, Conrath H, Saleun S, Folliot S, Provost N, Cosset FL et al. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol Ther 2002; 6: 446–454.

    Article  CAS  PubMed  Google Scholar 

  46. Molina RP, Ye HQ, Brady J, Mech CA, Kaleko M, Luo T . Baculovirus GP64 pseudotyped bovine immunodeficiency virus-based lentiviral vectors efficiently transduce retinal cells in vivo. Mol Ther 2004; 9 (Suppl 1): S277 (abstract 728).

    Google Scholar 

  47. Liang FQ, Anand V, Maguire AM, Bennett J Intraocular delivery of recombinant virus. Methods Mol Med 2001; 47: 125–139.

    CAS  PubMed  Google Scholar 

  48. Adhikary AK, Banik U, Numaga J, Suzuki E, Inada T, Okabe N Heterogeneity of the fibre sequence in subgenus C adenoviruses. J Clin Pathol 2004; 57: 612–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weaver EA, Hillestad ML, Khare R, Palmer D, Ng P, Barry MA . Characterization of species C human adenovirus serotype 6 (Ad6). Virology 2011; 412: 19–27.

    Article  CAS  PubMed  Google Scholar 

  50. Jomary C, Piper TA, Dickson G, Couture LA, Smith AE, Neal MJ et al. Adenovirus-mediated gene transfer to murine retinal cells in vitro and in vivo. FEBS Lett 1994; 347: 117–122.

    Article  CAS  PubMed  Google Scholar 

  51. Kaufman PL, Jia WW, Tan J, Chen Z, Gabelt BT, Booth V et al. A perspective of gene therapy in the glaucomas. Surv Ophthalmol 1999; 43: S91–S97.

    Article  PubMed  Google Scholar 

  52. Tani H, Nishijima M, Ushijima H, Miyamura T, Matsuura Y Characterization of cell-surface determinants important for baculovirus infection. Virology 2001; 279: 343–353.

    Article  CAS  PubMed  Google Scholar 

  53. Wu C, Wang S A pH-sensitive heparin-binding sequence from Baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells. J Virol 2012; 86: 484–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bartha A, Juhasz M, Liebermann H Isolation of a bovine herpesvirus from calves with respiratory disease and keratoconjunctivitis. A preliminary report. Acta Vet Acad Sci Hung 1966; 16: 357–358.

    CAS  PubMed  Google Scholar 

  55. Donofrio G, Cavirani S, Simone T, van Santen VL Potential of bovine herpesvirus 4as a gene delivery vector. J Virol Methods 2002; 101: 49–61.

    Article  CAS  PubMed  Google Scholar 

  56. Donofrio G, Manarolla G, Ravanetti L, Sironi G, Cavirani S, Cabassi CS et al. Assessment of bovine herpesvirus 4 based vector in chicken. J Virol Methods 2008; 148: 303–306.

    Article  CAS  PubMed  Google Scholar 

  57. Lamartina S, Cimino M, Roscilli G, Dammassa E, Lazzaro D, Rota R et al. Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med 2007; 9: 862–874.

    Article  CAS  PubMed  Google Scholar 

  58. Brunetti-Pierri N, Ng T, Iannitti D, Cioffi W, Stapleton G, Law M et al. Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors. Hum Gene Ther 2013; 24: 761–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balaggan KS, Binley K, Esapa M, MacLaren RE, Iqball S, Duran Y et al. EIAV vector-mediated delivery of endostatin or angiostatin inhibits angiogenesis and vascular hyperpermeability in experimental CNV. Gene Ther 2006; 13: 1153–1165.

    Article  CAS  PubMed  Google Scholar 

  60. Kronenberg S, Kleinschmidt JA, Bottcher B Electron cryo-microscopy and image reconstruction of adeno-associated virus type 2 empty capsids. EMBO Rep 2001; 2: 997–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kumar-Singh R Barriers for retinal gene therapy: separating fact from fiction. Vision Res 2008; 48: 1671–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sastry L, Miller CA, Johnson T, Jasti A, Gattone VH, Cornetta K Negative Staining and Immunocytochemistry of HIV-1 Vectors. Microsc Microanal 2005; 11: 972–973.

    Article  Google Scholar 

  63. Forest T, Barnard S, Baines JD Active intranuclear movement of herpesvirus capsids. Nat Cell Biol 2005; 7: 429–431.

    Article  CAS  PubMed  Google Scholar 

  64. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 1999; 6: 1520–1535.

    Article  CAS  PubMed  Google Scholar 

  65. Pickles RJ, Fahrner JA, Petrella JM, Boucher RC, Bergelson JM Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J Virol 2000; 74: 6050–6057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takahashi M, Miyoshi H, Verma IM, Gage FH Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 1999; 73: 7812–7816.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Balaggan KS, Binley K, Esapa M, Iqball S, Askham Z, Kan O et al. Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. J Gene Med 2006; 8: 275–285.

    Article  CAS  PubMed  Google Scholar 

  68. Nicoud M, Kong J, Iqball S, Kan O, Naylor S, Gouras P et al. Development of photoreceptor-specific promoters and their utility to investigate EIAV lentiviral vector mediated gene transfer to photoreceptors. J Gene Med 2007; 9: 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  69. Calame M, Cachafeiro M, Philippe S, Schouwey K, Tekaya M, Wanner D et al. Retinal degeneration progression changes lentiviral vector cell targeting in the retina. PLoS One 2011; 6: e23782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lipinski DM, Barnard AR, Charbel Issa P, Singh MS, De Silva SR, Trabalza A et al. Vesicular stomatitis virus glycoprotein- and venezuelan equine encephalitis virus-derived glycoprotein-pseudotyped lentivirus vectors differentially transduce corneal endothelium, trabecular meshwork, and human photoreceptors. Hum Gene Ther 2014; 25: 50–62.

    Article  CAS  PubMed  Google Scholar 

  71. Trapani I, Colella P, Sommella A, Iodice C, Cesi G, de Simone S . Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 2014; 6: 194–211.

    CAS  PubMed  Google Scholar 

  72. Colella P, Trapani I, Cesi G, Sommella A, Manfredi A, Puppo A et al. Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors. Gene Ther 2014; 21: 450–456.

    Article  CAS  PubMed  Google Scholar 

  73. Palmer DJ, Ng P Physical and infectious titers of helper-dependent adenoviral vectors: a method of direct comparison to the adenovirus reference material. Mol Ther 2004; 10: 792–798.

    Article  CAS  PubMed  Google Scholar 

  74. Parks R, Evelegh C, Graham F Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther 1999; 6: 1565–1573.

    Article  CAS  PubMed  Google Scholar 

  75. Weaver EA, Nehete PN, Buchl SS, Senac JS, Palmer D, Ng P et al. Comparison of replication-competent, first generation, and helper-dependent adenoviral vaccines. PLoS One 2009; 4: e5059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Toietta G, Pastore L, Cerullo V, Finegold M, Beaudet AL, Lee B Generation of helper-dependent adenoviral vectors by homologous recombination. Mol Ther 2002; 5: 204–210.

    Article  CAS  PubMed  Google Scholar 

  77. Quinn K, Brindley MA, Weller ML, Kaludov N, Kondratowicz A, Hunt CL et al. Rho GTPases modulate entry of Ebola virus and vesicular stomatitis virus pseudotyped vectors. J Virol 2009; 83: 10176–10186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Donofrio G, Sartori C, Franceschi V, Capocefalo A, Cavirani S, Taddei S et al. Double immunization strategy with a BoHV-4-vectorialized secreted chimeric peptide BVDV-E2/BoHV-1-gD. Vaccine 2008; 26: 6031–6042.

    Article  CAS  PubMed  Google Scholar 

  79. Donofrio G, Cavaggioni A, Bondi M, Cavirani S, Flammini CF, Mucignat-Caretta C Outcome of bovine herpesvirus 4 infection following direct viral injection in the lateral ventricle of the mouse brain. Microbes Infect 2006; 8: 898–904.

    Article  CAS  PubMed  Google Scholar 

  80. Auricchio A, Hildinger M, O'Connor E, Gao GP, Wilson JM Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther 2001; 12: 71–76.

    Article  CAS  PubMed  Google Scholar 

  81. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Doria M, Ferrara A, Auricchio A AAV2/8 vectors purified from culture medium with a simple and rapid protocol transduce murine liver, muscle, and retina efficiently. Hum Gene Ther Methods 2013; 24: 392–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Papaioannou VE, Fox JG Efficacy of tribromoethanol anesthesia in mice. Lab Anim Sci 1993; 43: 189–192.

    CAS  PubMed  Google Scholar 

  84. Allocca M, Manfredi A, Iodice C, Di Vicino U, Auricchio A AAV-mediated gene replacement, either alone or in combination with physical and pharmacological agents, results in partial and transient protection from photoreceptor degeneration associated with betaPDE deficiency. Invest Ophthalmol Vis Sci 2011; 52: 5713–5719.

    Article  CAS  PubMed  Google Scholar 

  85. Stein CS, Martins I, Davidson BL The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol Ther 2005; 11: 382–389.

    Article  CAS  PubMed  Google Scholar 

  86. Sinn PL, Burnight ER, Shen H, Fan H, McCray PB Jr . Inclusion of Jaagsiekte sheep retrovirus proviral elements markedly increases lentivirus vector pseudotyping efficiency. Mol Ther 2005; 11: 460–469.

    Article  CAS  PubMed  Google Scholar 

  87. Kang Y, Stein CS, Heth JA, Sinn PL, Penisten AK, Staber PD et al. In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J Virol 2002; 76: 9378–9388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sinn PL, Arias AC, Brogden KA, McCray PB Jr . Lentivirus vector can be readministered to nasal epithelia without blocking immune responses. J Virol 2008; 82: 10684–10692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the TIGEM AAV Vector Core for AAV vector production and the TIGEM Ad Vector Core for expanding some adenoviral preps and providing some Ad controls (see Materials and Methods for details). We are also grateful to Graciana Diez-Roux for the critical reading of this manuscript. This work was supported by the European Research Council/ERC Grant agreement n 282085 ‘RetGeneTx’; the NIH (grant R24 EY019861-01 A); the Italian Telethon Foundation (grant TGM11MT1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Auricchio.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puppo, A., Cesi, G., Marrocco, E. et al. Retinal transduction profiles by high-capacity viral vectors. Gene Ther 21, 855–865 (2014). https://doi.org/10.1038/gt.2014.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.57

This article is cited by

Search

Quick links