Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of an optimized lentiviral vector encoding a high-expression factor VIII transgene for gene therapy of hemophilia A

Abstract

We previously compared the expression of several human factor VIII (fVIII) transgene variants and demonstrated the superior expression properties of B domain-deleted porcine fVIII. Subsequently, a hybrid human/porcine fVIII molecule (HP-fVIII) comprising 91% human amino-acid sequence was engineered to maintain the high-expression characteristics of porcine fVIII. The bioengineered construct then was used effectively to treat knockout mice with hemophilia A. In the current study, we focused on optimizing self-inactivating (SIN) lentiviral vector systems by analyzing the efficacy of various lentiviral components in terms of virus production, transduction efficiency and transgene expression. Specifically, three parameters were evaluated: (1) the woodchuck hepatitis post-transcriptional regulatory element (WPRE), (2) HIV versus SIV viral vector systems and (3) various internal promoters. The inclusion of a WPRE sequence had negligible effects on viral production and HP-fVIII expression. HIV and SIV vectors were compared and found to be similar with respect to transduction efficiency in both K562s and HEK-293T cells. However, there was an enhanced expression of HP-fVIII by the SIV system, which was evident in both K562 and BHK-M cell lines. To further compare expression of HP-fVIII from an SIV-based lentiviral system, we constructed expression vectors containing the high expression transgene and a human elongation factor-1 alpha, cytomegalovirus (CMV) or phosphoglycerate kinase promoter. Expression was significantly greater from the CMV promoter, which also yielded therapeutic levels of HP-fVIII in hemophilia A mice. Based on these studies, an optimized vector contains the HP-fVIII transgene driven by a CMV internal promoter within a SIV-based lentiviral backbone lacking a WPRE.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Ehrenforth S, Kreuz W, Scharrer I, Kornhuber B . Factor VIII inhibitors in haemophiliacs. Lancet 1992; 340: 253.

    Article  CAS  PubMed  Google Scholar 

  2. VandenDriessche T, Collen D, Chuah MK . Viral vector-mediated gene therapy for hemophilia. Curr Gene Ther 2001; 1: 301–315.

    Article  CAS  PubMed  Google Scholar 

  3. Roth DA, Tawa NE, O'Brien JM, Treco DA, Selden RF . Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001; 344: 1735–1742.

    Article  CAS  PubMed  Google Scholar 

  4. Powell JS, Ragni MV, White GC, Lusher JM, Hillman-Wiseman C, Moon TE et al. Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood 2003; 102: 2038–2045.

    Article  CAS  PubMed  Google Scholar 

  5. Berlfein J . Clinical trial update. Hemaware 2003; 8: 52–53.

    Google Scholar 

  6. Ide LM, Gangadharan B, Chiang KY, Doering CB, Spencer HT . Hematopoietic stem-cell gene therapy of hemophilia A incorporating a porcine factor VIII transgene and nonmyeloablative conditioning regimens. Blood 2007; 110: 2855–2863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doering CB, Gangadharan B, Dukart HZ, Spencer HT . Hematopoietic stem cells encoding porcine factor VIII induce pro-coagulant activity in hemophilia A mice with pre-existing factor VIII immunity. Mol Ther 2007; 15: 1093–1099.

    Article  CAS  PubMed  Google Scholar 

  8. Dooriss KL, Denning G, Gangadharan B, Javazon EH, McCarty DA, Spencer HT et al. Comparison of factor VIII transgenes bioengineered for improved expression in gene therapy of hemophilia A. Hum Gene Ther 2009; 20: 465–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doering CB, Healey JF, Parker ET, Barrow RT, Lollar P . Identification of porcine coagulation factor VIII domains responsible for high level expression via enhanced secretion. J Biol Chem 2004; 279: 6546–6552.

    Article  CAS  PubMed  Google Scholar 

  10. Doering CB, Denning G, Dooriss K, Gangadharan B, Johnston JM, Kerstann KW et al. Directed engineering of a high-expression chimeric transgene as a strategy for gene therapy of hemophilia A. Mol Ther 2009; 17: 1145–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Healey JF, Parker ET, Barrow RT, Langley TJ, Church WR, Lollar P . The comparative immunogenicity of human and porcine factor VIII in haemophilia A mice. Thromb Haemost 2009; 102: 35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lubin IM, Healey JF, Barrow RT, Scandella D, Lollar P . Analysis of the human factor VIII A2 inhibitor epitope by alanine scanning mutagenesis. J Biol Chem 1997; 272: 30191–30195.

    Article  CAS  PubMed  Google Scholar 

  13. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  14. Johnston J, Doering CB, Spencer HT . Gene therapy strategies incorporating large transgenes. In: Chunsheng Kang, (ed). Gene Therapy - Developments and Future Perspectives. InTech: Croatia, 2011, pp 121–142.

    Google Scholar 

  15. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brun S, Faucon-Biguet N, Mallet J . Optimization of transgene expression at the posttranscriptional level in neural cells: implications for gene therapy. Mol Ther 2003; 7: 782–789.

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez-Murillo A, Lozano ML, Alvarez L, Jacome A, Almarza E, Navarro S et al. Development of lentiviral vectors with optimized transcriptional activity for the gene therapy of patients with Fanconi anemia. Hum Gene Ther 2010; 21: 623–630.

    Article  CAS  PubMed  Google Scholar 

  18. Klein R, Ruttkowski B, Knapp E, Salmons B, Gunzburg WH, Hohenadl C . WPRE-mediated enhancement of gene expression is promoter and cell line specific. Gene 2006; 372: 153–161.

    Article  CAS  PubMed  Google Scholar 

  19. Kingsman SM, Mitrophanous K, Olsen JC . Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Therapy 2005; 12: 3–4.

    Article  CAS  PubMed  Google Scholar 

  20. Doering CB, Spencer HT . Advancements in gene transfer-based therapy for hemophilia A. Expert Rev Hematol 2009; 2: 673–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spencer HT et al. Lentiviral vector platform for production of bioengineered recombinant coagulation factor VIII. Mol Ther 2011; 19: 302–309.

    Article  CAS  PubMed  Google Scholar 

  22. Hu C, Cela RG, Suzuki M, Lee B, Lipshutz GS . Neonatal helper-dependent adenoviral vector gene therapy mediates correction of hemophilia A and tolerance to human factor VII. Proc Natl Acad Sci 2011; 108: 2082–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu C, Lipshutz GS . AAV-based neonatal gene therapy for hemophilia A: long-term correction and avoidance of immune responses in mice. Gene Therapy 2012 doi:10.1038/gt.2011.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aruda V . Toward gene therapy for hemophilia A with novel adenoviral vectors: success and limitations in canine models. J Thromb Haemost 2006; 4: 1215–1217.

    Article  Google Scholar 

  25. Scallan CD, Liu T, Parker AE, Patarroyo-White SL, Chen H, Jiang H et al. Phenotypic correction of a mouse model of hemophilia A using AAV2 vectors encoding the heavy and light chains of FVIII. Blood 2003; 102: 3919–3926.

    Article  CAS  PubMed  Google Scholar 

  26. Sarkar R, Mucci M, Addya S, Tetreault R, Bellinger DA, Nichols TC et al. Long-term efficacy of adeno-associated virus serotypes 8 and 9 in hemophilia A dogs and mice. Hum Gene Ther 2006; 17: 427–439.

    Article  CAS  PubMed  Google Scholar 

  27. Scallan CD, Lillicrap D, Jiang H, Qian X, Patarroyo-White SL, Parker AE et al. Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector. Blood 2003; 102: 2031–2037.

    Article  CAS  PubMed  Google Scholar 

  28. Sarkar R, Tetreault R, Gao G, Wang L, Bell P, Chandler R et al. Total correction of hemophilia A mice with canine FVIII using an AAV 8 serotype. Blood 2004; 103: 1253–1260.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang H, Lillicrap D, Patarroyo-White S, Liu T, Qian X, Scallan CD et al. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 2006; 108: 107–115.

    Article  CAS  PubMed  Google Scholar 

  30. Lu H, Chen L, Wang J, Huack B, Sarkar R, Zhou S et al. Complete correction of hemophilia A with adeno-associated viral vectors containing a full-size expression cassette. Hum Gene Ther 2008; 19: 648–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sabatino DE, Lange AM, Altynova ES, Sarkar R, Zhou S, Merricks EP et al. Efficacy and safety of long-term prophylaxis in severe hemophilia A dogs following liver gene therapy using AAV vectors. Mol Ther 2011; 19: 442–449.

    Article  CAS  PubMed  Google Scholar 

  32. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    CAS  PubMed  Google Scholar 

  33. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  34. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326: 818–823.

    Article  CAS  PubMed  Google Scholar 

  35. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010; 467: 318–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M et al. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 2011; 117: 5332–5339.

    Article  CAS  PubMed  Google Scholar 

  37. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Iwakuma T, Cui Y, Chang LJ . Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 1999; 261: 120–132.

    Article  CAS  PubMed  Google Scholar 

  39. Pauwels K, Gijsbers R, Toelen J, Schambach A, Willard-Gallo K, Verheust C et al. State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther 2009; 9: 459–474.

    Article  CAS  PubMed  Google Scholar 

  40. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  PubMed  Google Scholar 

  41. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009; 119: 964–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ward NJ, Buckley SM, Waddington SN, Vandendriessche T, Chuah MK, Nathwani AC et al. Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood 2011; 117: 798–807.

    Article  CAS  PubMed  Google Scholar 

  43. Lynch CM, Israel DI, Kaufman RJ, Miller AD . Sequences in the coding region of clotting factor VIII act as dominant inhibitors of RNA accumulation and protein production. Hum Gene Ther 1993; 4: 259–272.

    Article  CAS  PubMed  Google Scholar 

  44. Hoeben RC, Fallaux FJ, Cramer SJ, van den Wollenberg DJ, van Ormondt H, Briet E et al. Expression of the blood-clotting factor-VIII cDNA is repressed by a transcriptional silencer located in its coding region. Blood 1995; 85: 2447–2454.

    CAS  PubMed  Google Scholar 

  45. Koeberl DD, Halbert CL, Krumm A, Miller AD . Sequences within the coding regions of clotting factor VIII and CFTR block transcriptional elongation. Hum Gene Ther 1995; 6: 469–479.

    Article  CAS  PubMed  Google Scholar 

  46. Fallaux FJ, Hoeben RC, Cramer SJ, van den Wollenberg DJ, Briet E, van Ormondt H et al. The human clotting factor VIII cDNA contains an autonomously replicating sequence consensus- and matrix attachment region-like sequence that binds a nuclear factor, represses heterologous gene expression, and mediates the transcriptional effects of sodium butyrate. MCB 1996; 16: 4264–4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian HH . Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 1995; 10: 119–121.

    Article  CAS  PubMed  Google Scholar 

  48. Doering CB, Healey JF, Parker ET, Barrow RT, Lollar P . High level expression of recombinant porcine coagulation factor VIII. J Biol Chem 2002; 277: 38345–38349.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Arthur Nienhuis (St Jude University, Memphis, TN, USA) for the SIV vector system. This work was supported by grants from the National Heart, Lung and Blood Institute of the National Institutes of Health (5R01HL092179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H T Spencer.

Ethics declarations

Competing interests

HTS and CBD have equity interest in Expression Therapeutics, LLC, which owns the bioengineered high expression technology. GD is an employee of Expression Therapeutics, LLC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, J., Denning, G., Doering, C. et al. Generation of an optimized lentiviral vector encoding a high-expression factor VIII transgene for gene therapy of hemophilia A. Gene Ther 20, 607–615 (2013). https://doi.org/10.1038/gt.2012.76

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.76

Keywords

This article is cited by

Search

Quick links