Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane

Abstract

The auditory portion of the inner ear, the cochlea, is an ideal organ for local gene transfection owing to its relative isolation. Various carriers have been tested for cochlear gene transfection. To date, viral vectors appear to have much higher transfection efficacy than non-viral mechanisms. Among these vectors, recombinant adeno-associated virus (rAAV) vectors have several advantages such as being non-pathogenic and the ability to produce prolonged gene expression in various cell types. However, rAAV vectors cannot pass through the intact round window membrane (RWM), otherwise a very attractive approach to access the human inner ear. In this study, performed in guinea-pigs, we describe a method to increase the permeability of RWM to rAAV vectors by partial digestion with collagenase solution. Elevated delivery of rAAV across the partially digested RWM increased transfection efficacy to a satisfactory level, even though it was still lower than that achieved by direct cochleostomy injection. Functional tests (auditory brainstem responses) showed that this enzymatic manipulation did not cause permanent hearing loss if applied appropriately. Morphological observations suggested that the damage to RWM caused by partial digestion healed within four weeks. Taken together, these findings suggest that partial digestion of the RWM is a safe and effective method for increasing the transfection of cochlear sensory cells with rAAV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Duan M, Venail F, Spencer N, Mezzina M . Treatment of peripheral sensorineural hearing loss: gene therapy. Gene Therapy 2004; 11 (Suppl 1): S51–S56.

    Article  CAS  PubMed  Google Scholar 

  2. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005; 11: 271–276.

    Article  CAS  PubMed  Google Scholar 

  3. Hildebrand MS, Newton SS, Gubbels SP, Sheffield AM, Kochhar A, de Silva MG et al. Advances in molecular and cellular therapies for hearing loss. Mol Ther 2008; 16: 224–236.

    Article  CAS  PubMed  Google Scholar 

  4. Brigande JV, Heller S . Quo vadis, hair cell regeneration? Nat Neurosci 2009; 12: 679–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kesser BW, Lalwani AK . Gene therapy and stem cell transplantation: strategies for hearing restoration. Adv Otorhinolaryngol 2009; 66: 64–86.

    CAS  PubMed  Google Scholar 

  6. Maeda Y, Sheffield AM, Smith RJ . Therapeutic regulation of gene expression in the inner ear using RNA interference. Adv Otorhinolaryngol 2009; 66: 13–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei D, Yamoah EN . Regeneration of the mammalian inner ear sensory epithelium. Curr Opin Otolaryngol Head Neck Surg 2009; 17: 373–380.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cotanche DA . Genetic and pharmacological intervention for treatment/prevention of hearing loss. J Commun Disord 2008; 41: 421–443.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Luebke AE, Rova C, Von Doersten PG, Poulsen DJ . Adenoviral and AAV-mediated gene transfer to the inner ear: role of serotype, promoter, and viral load on in vivo and in vitro infection efficiencies. Adv Otorhinolaryngol 2009; 66: 87–98.

    CAS  PubMed  Google Scholar 

  10. Jero J, Mhatre AN, Tseng CJ, Stern RE, Coling DE, Goldstein JA et al. Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther 2001; 12: 539–548.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki M, Yagi M, Brown JN, Miller AL, Miller JM, Raphael Y . Effect of transgenic GDNF expression on gentamicin-induced cochlear and vestibular toxicity. Gene Therapy 2000; 7: 1046–1054.

    Article  CAS  PubMed  Google Scholar 

  12. Konishi T, Salt AN, Hamrick PE . Effects of exposure to noise on permeability to potassium of the endolymph–perilymph barrier in guinea pigs. Acta Otolaryngol 1982; 94: 395–401.

    Article  CAS  PubMed  Google Scholar 

  13. Stover T, Yagi M, Raphael Y . Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res 1999; 136: 124–130.

    Article  CAS  PubMed  Google Scholar 

  14. Carvalho GJ, Lalwani AK . The effect of cochleostomy and intracochlear infusion on auditory brain stem response threshold in the guinea pig. Am J Otol 1999; 20: 87–90.

    CAS  PubMed  Google Scholar 

  15. Salt AN, Sirjani DB, Hartsock JJ, Gill RM, Plontke SK . Marker retention in the cochlea following injections through the round window membrane. Hear Res 2007; 232: 78–86.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kaplan DM, Hehar SS, Bance ML, Rutka JA . Intentional ablation of vestibular function using commercially available topical gentamicin–betamethasone eardrops in patients with Meniere's disease: further evidence for topical eardrop ototoxicity. Laryngoscope 2002; 112: 689–695.

    Article  CAS  PubMed  Google Scholar 

  17. Bath AP, Walsh RM, Bance ML . Presumed reduction of vestibular function in unilateral Meniere's disease with aminoglycoside eardrops. J Laryngol Otol 1999; 113: 916–918.

    Article  CAS  PubMed  Google Scholar 

  18. Bath AP, Walsh RM, Bance ML, Rutka JA . Ototoxicity of topical gentamicin preparations. Laryngoscope 1999; 109: 1088–1093.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Hirose K, Liberman MC . Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 2002; 3: 248–268.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008; 105: 7827–7832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17: 463–471.

    Article  CAS  PubMed  Google Scholar 

  22. Silverstein H, Arruda J, Rosenberg SI, Deems D, Hester TO . Direct round window membrane application of gentamicin in the treatment of Meniere's disease. Otolaryngol Head Neck Surg 1999; 120: 649–655.

    Article  CAS  PubMed  Google Scholar 

  23. Luebke AE, Foster PK, Muller CD, Peel AL . Cochlear function and transgene expression in the guinea pig cochlea, using adenovirus- and adeno-associated virus-directed gene transfer. Hum Gene Ther 2001; 12: 773–781.

    Article  CAS  PubMed  Google Scholar 

  24. Konishi M, Kawamoto K, Izumikawa M, Kuriyama H, Yamashita T . Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J Gene Med 2008; 10: 610–618.

    Article  CAS  PubMed  Google Scholar 

  25. Liu YH, Ke XM, Qin Y, Gu ZP, Xiao SF . Adeno-associated virus-mediated Bcl-xL prevents aminoglycoside-induced hearing loss in mice. Chin Med J (Engl) 2007; 120: 1236–1240.

    Article  CAS  Google Scholar 

  26. Cooper LB, Chan DK, Roediger FC, Shaffer BR, Fraser JF, Musatov S et al. AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol 2006; 27: 484–490.

    PubMed  Google Scholar 

  27. Romano G . Current development of adeno-associated viral vectors. Drug News Perspect 2005; 18: 311–316.

    Article  CAS  PubMed  Google Scholar 

  28. Stone IM, Lurie DI, Kelley MW, Poulsen DJ . Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol Ther 2005; 11: 843–848.

    Article  CAS  PubMed  Google Scholar 

  29. Carson SD . Limited proteolysis of the coxsackievirus and adenovirus receptor (CAR) on HeLa cells exposed to trypsin. FEBS Lett 2000; 484: 149–152.

    Article  CAS  PubMed  Google Scholar 

  30. Soudais C, Boutin S, Hong SS, Chillon M, Danos O, Bergelson JM et al. Canine adenovirus type 2 attachment and internalization: coxsackievirus-adenovirus receptor, alternative receptors, and an RGD-independent pathway. J Virol 2000; 74: 10639–10649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qiu J, Handa A, Kirby M, Brown KE . The interaction of heparin sulfate and adeno-associated virus 2. Virology 2000; 269: 137–147.

    Article  CAS  PubMed  Google Scholar 

  32. Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA . Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 2001; 75: 6884–6893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10: 3941–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87: 2211–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goycoolea MV, Lundman L . Round window membrane. Structure function and permeability: a review. Microsc Res Technol 1997; 36: 201–211.

    Article  CAS  Google Scholar 

  36. Shi L, Ermis R, Garcia A, Telgenhoff D, Aust D . Degradation of human collagen isoforms by Clostridium collagenase and the effects of degradation products on cell migration. Int Wound J 2010; 7: 87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yoshihara T, Kaname H, Ishii T, Igarashi M . Subepithelial fiber components of the round window membrane of the guinea pig: an ultrastructural and immunohistochemical study. ORL J Otorhinolaryngol Relat Spec 1995; 57: 115–121.

    Article  CAS  PubMed  Google Scholar 

  38. Lalwani A, Walsh B, Reilly P, Carvalho G, Zolotukhin S, Muzyczka N et al. Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus. Gene Therapy 1998; 5: 277–281.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Okada T, Sheykholeslami K, Shimazaki K, Nomoto T, Muramatsu S et al. Specific and efficient transduction of cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther 2005; 12: 725–733.

    Article  CAS  PubMed  Google Scholar 

  40. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 2004; 10: 302–317.

    Article  CAS  PubMed  Google Scholar 

  41. Fritzsch B, Farinas I, Reichardt LF . Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci 1997; 17: 6213–6225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Okada T, Nomoto T, Ke X, Kume A, Ozawa K et al. Promoter effects of adeno-associated viral vector for transgene expression in the cochlea in vivo. Exp Mol Med 2007; 39: 170–175.

    Article  CAS  PubMed  Google Scholar 

  43. Boeda B, Weil D, Petit C . A specific promoter of the sensory cells of the inner ear defined by transgenesis. Hum Mol Genet 2001; 10: 1581–1589.

    Article  CAS  PubMed  Google Scholar 

  44. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Natural Outstanding Youth Foundation of China (Grant No. 30925035), Special Program for Key Basic Research of the Ministry of Science and Technology, China (Grant No. 2009CB526504) and National Natural Science Foundation of China (Grant No. 30901669).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Yin or J Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Murphy, R., Taaffe, D. et al. Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane. Gene Ther 19, 255–263 (2012). https://doi.org/10.1038/gt.2011.91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.91

Keywords

This article is cited by

Search

Quick links