Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long-term increase in uterine blood flow is achieved by local overexpression of VEGF-A165 in the uterine arteries of pregnant sheep

Abstract

Increasing uterine artery blood flow (UABF) may benefit fetal growth restriction where impaired uteroplacental perfusion prevails. Based on previous short-term results, we examined the long-term effects of adenovirus vector-mediated overexpression of vascular endothelial growth factor-A165 (VEGF-A165) in the uterine artery (UtA). Transit-time flow probes were implanted around both UtAs of mid-gestation pregnant sheep (n=11) to measure UABF. A carotid artery catheter was inserted to measure maternal or fetal hemodynamics. Baseline UABF was measured over 3 days, before injection of adenovirus vector (5 × 1011 particles) encoding the VEGF-A165 gene (Ad.VEGF-A165) into one UtA and a reporter β-galactosidase gene (Ad.LacZ) contralaterally. UABF was then measured daily until term. At 4 weeks post injection, the increase in UABF was significantly higher in Ad.VEGF-A165 compared with Ad.LacZ-transduced UtAs (36.53% vs 20.08%, P=0.02). There was no significant effect on maternal and fetal blood pressure. Organ bath studies showed significantly lesser vasoconstriction (Emax 154.1 vs 184.7, P<0.001), whereas immunohistochemistry demonstrated a significantly increased number of adventitial blood vessels (140 vs 91, n=26, P<0.05) following Ad.VEGF-A165 transduction. Local overexpression of VEGF-A165 in the UtAs of pregnant mid-gestation sheep leads to a sustained long-term increase in UABF, which may be explained by neovascularization and altered vascular reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lang U, Baker RS, Braems G, Zygmunt M, Kunzel W, Clark KE . Uterine blood flow--a determinant of fetal growth. Eur J Obstet Gynecol Reprod Biol 2003; 110 (Suppl 1): S55–S61.

    Article  Google Scholar 

  2. Barker DJ . Adult consequences of fetal growth restriction. Clin Obstet Gynecol 2006; 49: 270–283.

    Article  Google Scholar 

  3. Naicker T, Khedun SM, Moodley J, Pijnenborg R . Quantitative analysis of trophoblast invasion in preeclampsia. Acta Obstet Gynecol Scand 2003; 82: 722–729.

    Article  Google Scholar 

  4. Reister F, Frank HG, Kingdom JC, Heyl W, Kaufmann P, Rath W et al. Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest 2001; 81: 1143–1152.

    Article  CAS  Google Scholar 

  5. Ong SS, Baker PN, Mayhew TM, Dunn WR . Remodeling of myometrial radial arteries in preeclampsia. Am J Obstet Gynecol 2005; 192: 572–579.

    Article  Google Scholar 

  6. Wareing M, Myers JE, O′Hara M, Baker PN . Sildenafil citrate (Viagra) enhances vasodilatation in fetal growth restriction. J Clin Endocrinol Metab 2005; 90: 2550–2555.

    Article  CAS  Google Scholar 

  7. Carmeliet P . Angiogenesis in health and disease. Nat Med 2003; 9: 653–660.

    Article  CAS  Google Scholar 

  8. Zachary I, Mathur A, Yla-Herttuala S, Martin J . Vascular protection: a novel nonangiogenic cardiovascular role for vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 2000; 20: 1512–1520.

    Article  CAS  Google Scholar 

  9. Ku DD, Zaleski JK, Liu S, Brock TA . Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol 1993; 265 (2 Pt 2): H586–H592.

    CAS  Google Scholar 

  10. Takeshita S, Isshiki T, Ochiai M, Eto K, Mori H, Tanaka E et al. Endothelium-dependent relaxation of collateral microvessels after intramuscular gene transfer of vascular endothelial growth factor in a rat model of hindlimb ischemia. Circulation 1998; 98: 1261–1263.

    Article  CAS  Google Scholar 

  11. Laitinen M, Zachary I, Breier G, Pakkanen T, Hakkinen T, Luoma J et al. VEGF gene transfer reduces intimal thickening via increased production of nitric oxide in carotid arteries. Hum Gene Ther 1997; 8: 1737–1744.

    Article  CAS  Google Scholar 

  12. Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Martin J, Zachary I . Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett 1997; 420: 28–32.

    Article  CAS  Google Scholar 

  13. Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T et al. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol 2002; 160: 1405–1423.

    Article  CAS  Google Scholar 

  14. Hemberger M, Nozaki T, Masutani M, Cross JC . Differential expression of angiogenic and vasodilatory factors by invasive trophoblast giant cells depending on depth of invasion. Dev Dyn 2003; 227: 185–191.

    Article  CAS  Google Scholar 

  15. Savvidou MD, Yu CK, Harland LC, Hingorani AD, Nicolaides KH . Maternal serum concentration of soluble fms-like tyrosine kinase 1 and vascular endothelial growth factor in women with abnormal uterine artery Doppler and in those with fetal growth restriction. Am J Obstet Gynecol 2006; 195: 1668–1673.

    Article  CAS  Google Scholar 

  16. Sibai B, Dekker G, Kupferminc M . Pre-eclampsia. Lancet 2005; 365: 785–799.

    Article  Google Scholar 

  17. Samangaya RA, Mires G, Shennan A, Skillern L, Howe D, McLeod A et al. A randomised, double-blinded, placebo-controlled study of the phosphodiesterase type 5 inhibitor sildenafil for the treatment of preeclampsia. Hypertens Pregnancy 2009; 28: 369–382.

    Article  CAS  Google Scholar 

  18. von Dadelszen P, Dwinnell S, Magee LA, Carleton BC, Gruslin A, Lee B et al. Sildenafil citrate therapy for severe early-onset intrauterine growth restriction. BJOG 2011; 118: 624–628.

    Article  CAS  Google Scholar 

  19. Miller SL, Loose JM, Jenkin G, Wallace EM . The effects of sildenafil citrate (Viagra) on uterine blood flow and well being in the intrauterine growth-restricted fetus. Am J Obstet Gynecol 2009; 200: 102. e1-7.

    Article  Google Scholar 

  20. Winer N, Branger B, Azria E, Tsatsaris V, Philippe HJ, Roze JC et al. L-Arginine treatment for severe vascular fetal intrauterine growth restriction: a randomized double-bind controlled trial. Clin Nutr 2009; 28: 243–248.

    Article  CAS  Google Scholar 

  21. Woods AK, Hoffmann DS, Weydert CJ, Butler SD, Zhou Y, Sharma RV et al. Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertension 2011; 57: 94–102.

    Article  CAS  Google Scholar 

  22. Li Z, Zhang Y, Ying Ma J, Kapoun AM, Shao Q, Kerr I et al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension 2007; 50: 686–692.

    Article  CAS  Google Scholar 

  23. Harkness U, Parvadia J, Ripberger M, Vaikunth S, Uzvolgyi E, Alaee D et al. Placental gene transfer of IGF-1 corrects fetal growth restriction (Abstract). AJOG 2007; 195 (6, Supplement).

  24. Eremia SC, de Boo HA, Bloomfield FH, Oliver MH, Harding JE . Fetal and amniotic insulin-like growth factor-I supplements improve growth rate in intrauterine growth restriction fetal sheep. Endocrinology 2007; 148: 2963–2972.

    Article  CAS  Google Scholar 

  25. Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J . Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 2007; 49: 1015–1026.

    Article  Google Scholar 

  26. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH . Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994; 269: 26988–26995.

    CAS  PubMed  Google Scholar 

  27. Ferrara N . Molecular and biological properties of vascular endothelial growth factor. J Mol Med 1999; 77: 527–543.

    Article  CAS  Google Scholar 

  28. David AL, Torondel B, Zachary I, Wigley V, Abi-Nader K, Mehta V et al. Local delivery of VEGF adenovirus to the uterine artery increases vasorelaxation and uterine blood flow in the pregnant sheep. Gene Therapy 2008; 15: 1344–1350.

    Article  CAS  Google Scholar 

  29. Abi-Nader KN, Mehta V, Wigley V, Filippi E, Tezcan B, Boyd M et al. Doppler ultrasonography for the noninvasive measurement of uterine artery volume blood flow through gestation in the pregnant sheep. Reprod Sci 2010; 17: 13–19.

    Article  Google Scholar 

  30. Wallace JM, Milne JS, Matsuzaki M, Aitken RP . Serial measurement of uterine blood flow from mid to late gestation in growth restricted pregnancies induced by overnourishing adolescent sheep dams. Placenta 2008; 29: 718–724.

    Article  CAS  Google Scholar 

  31. Lang U, Baker RS, Khoury J, Clark KE . Fetal umbilical vascular response to chronic reductions in uteroplacental blood flow in late-term sheep. Am J Obstet Gynecol 2002; 187: 178–186.

    Article  Google Scholar 

  32. Osol G, Mandala M . Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda) 2009; 24: 58–71.

    Google Scholar 

  33. Barry JS, Anthony RV . The pregnant sheep as a model for human pregnancy. Theriogenology 2008; 69: 55–67.

    Article  CAS  Google Scholar 

  34. Akalin-Sel T, Nicolaides KH, Peacock J, Campbell S . Doppler dynamics and their complex interrelation with fetal oxygen pressure, carbon dioxide pressure, and pH in growth-retarded fetuses. Obstet Gynecol 1994; 84: 439–444.

    CAS  PubMed  Google Scholar 

  35. Lumbers ER . Effects of drugs on uteroplacental blood flow and the health of the foetus. Clin Exp Pharmacol Physiol 1997; 24: 864–868.

    Article  CAS  Google Scholar 

  36. Brownbill P, Mills TA, Soydemir DF, Sibley CP . Vasoactivity to and endogenous release of vascular endothelial growth factor in the in vitro perfused human placental lobule from pregnancies complicated by preeclampsia. Placenta 2008; 29: 950–955.

    Article  CAS  Google Scholar 

  37. Brownbill P, McKeeman GC, Brockelsby JC, Crocker IP, Sibley CP . Vasoactive and permeability effects of vascular endothelial growth factor-165 in the term in vitro dually perfused human placental lobule. Endocrinology 2007; 148: 4734–4744.

    Article  CAS  Google Scholar 

  38. Grummer MA, Sullivan JA, Magness RR, Bird IM . Vascular endothelial growth factor acts through novel, pregnancy-enhanced receptor signalling pathways to stimulate endothelial nitric oxide synthase activity in uterine artery endothelial cells. Biochem J 2009; 417: 501–511.

    Article  CAS  Google Scholar 

  39. Belgore F, Blann A, Neil D, Ahmed AS, Lip GY . Localisation of members of the vascular endothelial growth factor (VEGF) family and their receptors in human atherosclerotic arteries. J Clin Pathol 2004; 57: 266–272.

    Article  CAS  Google Scholar 

  40. Wallner W, Sengenberger R, Strick R, Strissel PL, Meurer B, Beckmann MW et al. Angiogenic growth factors in maternal and fetal serum in pregnancies complicated by intrauterine growth restriction. Clin Sci (Lond) 2007; 112: 51–57.

    Article  CAS  Google Scholar 

  41. Heistad DD, Marcus ML, Larsen GE, Armstrong ML . Role of vasa vasorum in nourishment of the aortic wall. Am J Physiol 1981; 240: H781–H787.

    CAS  PubMed  Google Scholar 

  42. Rissanen TT, Yla-Herttuala S . Current status of cardiovascular gene therapy. Mol Ther 2007; 15: 1233–1247.

    Article  CAS  Google Scholar 

  43. Khurana R, Shafi S, Martin J, Zachary I . Vascular endothelial growth factor gene transfer inhibits neointimal macrophage accumulation in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 2004; 24: 1074–1080.

    Article  CAS  Google Scholar 

  44. Barker SG, Talbert A, Cottam S, Baskerville PA, Martin JF . Arterial intimal hyperplasia after occlusion of the adventitial vasa vasorum in the pig. Arterioscler Thromb 1993; 13: 70–77.

    Article  CAS  Google Scholar 

  45. Marinova GV, Loyaga-Rendon RY, Obayashi S, Ishibashi T, Kubota T, Imamura M et al. Possible involvement of altered arginase activity, arginase type I and type II expressions, and nitric oxide production in occurrence of intimal hyperplasia in premenopausal human uterine arteries. J Pharmacol Sci 2008; 106: 385–393.

    Article  CAS  Google Scholar 

  46. Beppu M, Obayashi S, Aso T, Goto M, Azuma H . Endogenous nitric oxide synthase inhibitors in endothelial cells, endothelin-1 within the vessel wall, and intimal hyperplasia in perimenopausal human uterine arteries. J Cardiovasc Pharmacol 2002; 39: 192–200.

    Article  CAS  Google Scholar 

  47. Kitanaka T, Gilbert RD, Longo LD . Maternal responses to long-term hypoxemia in sheep. Am J Physiol 1989; 256 (6 Pt 2): R1340–R1347.

    CAS  PubMed  Google Scholar 

  48. Delotte J, Novellas S, Koh C, Bongain A, Chevallier P . Obstetrical prognosis and pregnancy outcome following pelvic arterial embolisation for post-partum hemorrhage. Eur J Obstet Gynecol Reprod Biol 2009; 145: 129–132.

    Article  Google Scholar 

  49. Baschat AA, Gembruch U, Reiss I, Gortner L, Weiner CP, Harman CR . Relationship between arterial and venous Doppler and perinatal outcome in fetal growth restriction. Ultrasound Obstet Gynecol 2000; 16: 407–413.

    Article  CAS  Google Scholar 

  50. Baschat AA, Gembruch U, Harman CR . The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol 2001; 18: 571–577.

    Article  CAS  Google Scholar 

  51. Turan OM, Turan S, Gungor S, Berg C, Moyano D, Gembruch U et al. Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol 2008; 32: 160–167.

    Article  CAS  Google Scholar 

  52. Arduini D, Rizzo G, Romanini C . Changes of pulsatility index from fetal vessels preceding the onset of late decelerations in growth-retarded fetuses. Obstet Gynecol 1992; 79: 605–610.

    CAS  PubMed  Google Scholar 

  53. Barbera A, Jones 3rd OW, Zerbe GO, Hobbins JC, Battaglia FC, Meschia G . Ultrasonographic assessment of fetal growth: comparison between human and ovine fetus. Am J Obstet Gynecol 1995; 173: 1765–1769.

    Article  CAS  Google Scholar 

  54. Abi-Nader KN, Mehta V, Shaw SW, Bellamy T, Smith N, Millross L et al. Telemetric monitoring of fetal blood pressure and heart rate in the freely moving pregnant sheep: a feasibility study. Lab Anim 2011; 45: 50–54.

    Article  CAS  Google Scholar 

  55. Viita H, Markkanen J, Eriksson E, Nurminen M, Kinnunen K, Babu M et al. 15-lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circ Res 2008; 102: 177–184.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly funded by University College London Hospital (UCLH) Charities. VM is supported by a Dorothy Hodgkin Postgraduate Award from the UK Medical Research Council and UCLH Charities. We thank Tom Bellamy, Marie Buitendyk, Beth Laverick, Laura Milross, Gemma Petts, Neil Smith, Berrin Tezcan, Panicos Shangaris and Simon Waddington for their assistance. JM is British Heart Foundation Professor of Cardiovascular Science. Work in IZ's group is funded by the British Heart Foundation. This work was undertaken at UCLH/UCL who received a proportion of funding from the Department of Health's NIHR Biomedical Research Centres funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V Mehta or K N Abi-Nader.

Ethics declarations

Competing interests

This work was funded in part by Ark Therapeutics Ltd, London. The adenovirus vectors were supplied free of charge by Ark Therapeutics Oy, Kuopio, Finland. JM is Chief Scientific Officer, Ark Therapeutics Ltd. IZ is a consultant for Ark Therapeutics Ltd.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, V., Abi-Nader, K., Peebles, D. et al. Long-term increase in uterine blood flow is achieved by local overexpression of VEGF-A165 in the uterine arteries of pregnant sheep. Gene Ther 19, 925–935 (2012). https://doi.org/10.1038/gt.2011.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.158

Keywords

Search

Quick links