Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification and removal of colanic acid from plasmid DNA preparations: implications for gene therapy

Abstract

Polysaccharide contaminants in plasmid DNA, including current good manufacturing practices (cGMP) clinical preparations, must be removed to provide the greatest safety and efficacy for use in gene therapy and other clinical applications. We developed assays and methods for the detection and removal of these polysaccharides, our Super Clean DNA (SC-DNA) process, and have shown that these contaminants in plasmid DNA preparations are responsible for toxicity observed post-injection in animals. Furthermore, these contaminants limit the efficacy of low and high doses of plasmid DNA administered by numerous delivery routes. In particular, colanic acid (CA) that is mainly long-chained, branched and has high molecular weight (MW) is most refractory when complexed to cationic delivery vehicles and injected intravenously (IV). Because CA is often extremely large and tightly intertwined with DNA, it must be degraded, in order, to be effectively removed. We have produced a recombinant, truncated colanic acid degrading enzyme (CAE) that successfully accomplishes this task. Initially, we isolated a newly identified CAE from a bacteriophage that required truncation for proper folding while retaining its full enzymatic activity during production. Any plasmid DNA preparation can be digested with CAE and further purified, providing a critical advance to non-viral gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tousignant JD, Gates AL, Ingram LA, Johnson CL, Nietupski JB, Cheng SH et al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum Gene Ther 2000; 11: 2493–2513.

    Article  CAS  PubMed  Google Scholar 

  2. McLachlan G, Stevenson BJ, Davidson DJ, Porteous DJ . Bacterial DNA is implicated in the inflammatory response to delivery of DNA/DOTAP to mouse lungs. Gene Ther 2000; 7: 384–392.

    Article  CAS  PubMed  Google Scholar 

  3. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN . Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 1997; 15: 647–652.

    Article  CAS  PubMed  Google Scholar 

  4. Lu C, Stewart DJ, Ji L, Ramesh R, Jayachandran G, Erasmus J et al. A Phase I trial of intravenous therapy with tumor suppressor FUS1-nanoparticles for recurrent/metastatic lung cancer. ASCO Meeting 2009, abstract e19065.

  5. Lu C, Sepulveda CA, Ji L, Ramesh R, O’Connor S, Jayachandran G et al. Systemic nanoparticle FUS1 tumor suppressor gene therapy for stage IV lung cancer. Annual Meeting of the American Association of Cancer Research 2007, Los Angeles, CA.

  6. Edelman M . Purification of DNA by affinity chromatography removal of polysaccharide contaminants. Anal Biochem 1975; 65: 293–297.

    Article  CAS  PubMed  Google Scholar 

  7. Do N, Adams RP . A simple technique for removing plant polysaccharide contaminants from DNA. Biotechniques 1991; 10: 162, 164, 166.

  8. Chan JW, Goodwin PH . Extraction of genomic DNA from extracellular polysaccharide-synthesizing gram-negative bacteria. Biotechniques 1995; 18: 418–422.

    CAS  PubMed  Google Scholar 

  9. Ingalls RR, Monks BG, Savedra Jr R, Christ WJ, Delude RL, Medvedev AE et al. CD11/CD18 and CD14 share a common lipid A signaling pathway. J Immunol 1998; 161: 5413–5420.

    CAS  PubMed  Google Scholar 

  10. Neudecker F, Grimm S . High-throughput method for isolating plasmid DNA with reduced lipopolysaccharide content. Biotechniques 2000; 28: 107–109.

    Article  CAS  PubMed  Google Scholar 

  11. Jann B, Jann K . Structure and biosynthesis of the capsular antigens of Escherichia coli. Curr Top Microbiol Immunol 1990; 150: 19–42.

    CAS  PubMed  Google Scholar 

  12. Wicken AJ . Bacterial cell walls and surfaces. Savage DC, Fletcher M (eds). In Bacterial Adhesion: mechanisms and physiological significance, Plenum Publishing Corporation: New York, NY, 1985, pp: 45–70.

    Chapter  Google Scholar 

  13. Goebel WF . Colanic acid. Proc Natl Acad Sci USA 1963; 49: 464–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shioda M, Murakami-Murofushi K . Selective inhibition of DNA polymerase alpha by a polysaccharide purified from slime of Physarum polycephalum. Biochem Biophys Res Commun 1987; 146: 61–66.

    Article  CAS  PubMed  Google Scholar 

  15. Aoki Y, Koshihara H . Inhibitory effects of acid polysaccharides from sea urchin embryos on RNA polymerase activity. Biochim Biophys Acta 1972; 272: 33–43.

    Article  CAS  PubMed  Google Scholar 

  16. Aoki Y, Koshihara H . Inhibitory effects of acid polysaccharides from sea urchin embryos in RNA synthesis in vitro. Exp Cell Res 1972; 70: 431–436.

    Article  CAS  PubMed  Google Scholar 

  17. Kuhn HM, Meier-Dieter U, Mayer H . ECA, the enterobacterial common antigen. FEMS Microbiol Rev 1988; 4: 195–222.

    Article  CAS  PubMed  Google Scholar 

  18. Fields PA, Kowalczyk DW, Arruda VR, Armstrong E, McCleland ML, Hagstrom JN et al. Role of vector in activation of T cell subsets in immune responses against the secreted transgene product factor IX. Mol Ther 2000; 1: 225–235.

    Article  CAS  PubMed  Google Scholar 

  19. Yew NS, Zhao H, Przybylska M, Wu IH, Tousignant JD, Scheule RK et al. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 2002; 5: 731–738.

    Article  CAS  PubMed  Google Scholar 

  20. Trisler P, Gottesman S . Ion transcriptional regulation of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12. J Bacteriol 1984; 160: 184–191.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Knutson CA, Jeanes A . A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 1968; 24: 470–481.

    Article  CAS  PubMed  Google Scholar 

  22. Morris JB . Enzymatic assay for subnanomole amounts of L-fucose. Anal Biochem 1982; 121: 129–134.

    Article  CAS  PubMed  Google Scholar 

  23. Hughes KA, Sutherland IW, Clark J, Jones MV . Bacteriophage and associated polysaccharide depolymerases–novel tools for study of bacterial biofilms. J Appl Microbiol 1998; 85: 583–590.

    Article  CAS  PubMed  Google Scholar 

  24. Hughes KA, Sutherland IW, Jones MV . Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 1998; 144 (Part 11): 3039–3047.

    Article  CAS  PubMed  Google Scholar 

  25. Sutherland IW . Phage-induced fucosidases hydrolysing the exopolysaccharide of Klebsiella arogenes type 54 (A3(S1)). Biochem J 1967; 104: 278–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verhoef R, Beldman G, Schols HA, Siika-aho M, Ratto M, Buchert J et al. Characterisation of a 1,4-beta-fucoside hydrolase degrading colanic acid. Carbohydr Res 2005; 340: 1780–1788.

    Article  CAS  PubMed  Google Scholar 

  27. Meeuwsen PJ, Vincken JP, Beldman G, Voragen AG . A universal assay for screening expression libraries for carbohydrases. J Biosci Bioeng 2000; 89: 107–109.

    Article  CAS  PubMed  Google Scholar 

  28. Schott H, Rudloff E, Schmidt P, Roychoudhury R, Kossel H . A dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid. Biochemistry 1973; 12: 932–938.

    Article  CAS  PubMed  Google Scholar 

  29. Singh N, Willson RC . Boronate affinity adsorption of RNA: possible role of conformational changes. J Chromatogr A 1999; 840: 205–213.

    Article  CAS  PubMed  Google Scholar 

  30. Jerkovic B, Kung HC, Bolton PH . Purification of thymine glycol DNA and nucleosides by use of boronate chromatography. Anal Biochem 1998; 255: 90–94.

    Article  CAS  PubMed  Google Scholar 

  31. Pruess-Schwartz D, Sebti SM, Gilham PT, Baird WM . Analysis of benzo(a)pyrene:DNA adducts formed in cells in culture by immobilized boronate chromatography. Cancer Res 1984; 44: 4104–4110.

    CAS  PubMed  Google Scholar 

  32. Larsson AM, Andersson R, Stahlberg J, Kenne L, Jones TA . Dextranase from Penicillium minioluteum: reaction course, crystal structure, and product complex. Structure 2003; 11: 1111–1121.

    Article  CAS  PubMed  Google Scholar 

  33. Yoder MD, Lietzke SE, Jurnak F . Unusual structural features in the parallel beta-helix in pectate lyases. Structure 1993; 1: 241–251.

    Article  CAS  PubMed  Google Scholar 

  34. Steinbacher S, Baxa U, Miller S, Weintraub A, Seckler R, Huber R . Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci USA 1996; 93: 10584–10588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ishii KJ, Akira S . Innate immune recognition of, and regulation by, DNA. Trends Immunol 2006; 27: 525–532.

    Article  CAS  PubMed  Google Scholar 

  36. Templeton NS . Cationic liposome-mediated gene delivery in vivo. Biosci Rep 2002; 22: 283–295.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson GB, Brunn GJ, Kodaira Y, Platt JL . Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 2002; 168: 5233–5239.

    Article  CAS  PubMed  Google Scholar 

  38. Arancibia SA, Beltran CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F et al. Toll-like receptors are key participants in innate immune responses. Biol Res 2007; 40: 97–112.

    Article  CAS  PubMed  Google Scholar 

  39. Altenbach D, Robatzek S . Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol Plant Microbe Interact 2007; 20: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  40. Krishnan J, Selvarajoo K, Tsuchiya M, Lee G, Choi S . Toll-like receptor signal transduction. Exp Mol Med 2007; 39: 421–438.

    Article  CAS  PubMed  Google Scholar 

  41. Dam TK, Brewer CF . Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 2010; 20: 270–279. 2009 Nov 24.

    Article  CAS  PubMed  Google Scholar 

  42. Lavelle EC, Murphy C, O’Neill LA, Creagh EM . The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol 2010; 3: 17–28.

    Article  CAS  PubMed  Google Scholar 

  43. McGreal EP . Structural basis of pattern recognition by innate immune molecules. Adv Exp Med Biol 2009; 653: 139–161.

    Article  CAS  PubMed  Google Scholar 

  44. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N S Templeton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firozi, P., Zhang, W., Chen, L. et al. Identification and removal of colanic acid from plasmid DNA preparations: implications for gene therapy. Gene Ther 17, 1484–1499 (2010). https://doi.org/10.1038/gt.2010.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.97

Keywords

Search

Quick links