Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PPARγ is essential for protection against nonalcoholic steatohepatitis

Abstract

Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor that regulates lipid metabolism and inflammatory responses. Certain PPARγ ligands improve nonalcoholic steatohepatitis (NASH). The role of PPARγ itself in NASH remains poorly understood. The functional consequences of PPARγ in the development of steatohepatitis through gene deficiency or gene overexpression of PPARγ delivered by adenovirus (Ad-PPARγ) were examined. Our results show that PPARγ-deficient (PPARγ+/−) mice fed the methionine- and choline-deficient (MCD) diet developed more severe steatohepatitis than wild-type mice, and were unaffected by PPARγ ligand rosiglitazone. Overexpression of PPARγ delivered by Ad-PPARγ attenuated steatohepatitis. This effect was associated with redistribution of fatty acid from liver to adipose tissue by enhancing expression of fatty acid uptake genes (fatty acid binding protein-4 (aP2), fatty acid translocase (CD36), lipoprotein lipase (LPL) and fatty acid transport protein-1 (FATP-1)) and lipogenic genes (sterol regulatory element binding protein isoform-1 (SREBP-1) and stearoyl-CoA desaturase isoform-1 (SCD-1)) in adipose tissue and to a lesser extent in liver. The anti-steatohepatitis action of PPARγ was also mediated via regulating adipokines through suppressing tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and inducing adiponectin. Moreover, PPARγ activation suppressed hepatic lipoperoxide and reduced hepatic pro-inflammatory cytokines (TNF-α and IL-6) production. In conclusion, PPARγ is an important endogenous regulator and potential therapeutic target for nutritional steatohepatitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ALT:

alanine aminotransferase

aP2:

fatty acid binding protein-4

FATP:

fatty acid transport protein

CD36:

fatty acid translocase

LPL:

lipoprotein lipase

MCD:

methionine and choline deficient

NASH:

nonalcoholic steatohepatitis

PPARγ:

peroxisome proliferator-activated receptor-γ

SCD-1:

stearoyl-CoA desaturase isoform-1

SREBP-1:

sterol regulatory element binding protein isoform-1

TG:

triglyceride

WAT:

white adipose tissue

TNF-α:

tumor necrosis factor-α

IL-6:

interleukin-6

References

  1. Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA . Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 1994; 135: 798–800.

    Article  CAS  Google Scholar 

  2. Jay MA, Ren J . Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr Diabetes Rev 2007; 3: 33–39.

    Article  CAS  Google Scholar 

  3. Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 2006; 355: 2297–2307.

    Article  CAS  Google Scholar 

  4. Lutchman G, Modi A, Kleiner DE, Promrat K, Heller T, Ghany M et al. The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis. Hepatology 2007; 46: 424–429.

    Article  CAS  Google Scholar 

  5. Caldwell SH, Argo CK . Divergent effects of peroxisome proliferator-activated receptor-gamma ligands in human and mouse nonalcoholic steatohepatitis. Hepatology 2007; 46: 285–287.

    Article  CAS  Google Scholar 

  6. Yu J, Ip E, Dela Pena A, Hou JY, Sesha J, Pera N et al. COX-2 induction in mice with experimental nutritional steatohepatitis: role as pro-inflammatory mediator. Hepatology 2006; 43: 826–836.

    Article  CAS  Google Scholar 

  7. The Jackson Laboratory. Technical document 006142. Available at http://jaxmice.jax.org/strain/006142.htmlAccessed April 2008.

  8. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101: 1354–1361.

    Article  CAS  Google Scholar 

  9. Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPARgamma) deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001; 276: 41245–41254.

    Article  CAS  Google Scholar 

  10. García-Ruiz I, Rodríguez-Juan C, Díaz-Sanjuán T, Martínez MA, Muñoz-Yagüe T, Solís-Herruzo JA . Effects of rosiglitazone on the liver histology and mitochondrial function in ob/ob mice. Hepatology 2007; 46: 414–423.

    Article  Google Scholar 

  11. Yu S, Matsusue K, Kashireddy P, Cao WQ, Yeldandi V, Yeldandi AV et al. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 2003; 278: 498–505.

    Article  CAS  Google Scholar 

  12. Evans RM, Barish GD, Wang YX . PPARs and the complex journey to obesity. Nat Med 2004; 10: 355–361.

    Article  CAS  Google Scholar 

  13. Chabowski A, Zmijewska M, Gorski J, Bonen A, Kamiñski K, Winnicka MM . Effect of IL-6 deficiency on myocardial expression of fatty acid transporters and intracellular lipid deposits.J Physiol Pharmacol 2007; 58: 73–82.

    CAS  PubMed  Google Scholar 

  14. Al-Hasani H, Joost HG . Nutrition-/diet-induced changes in gene expression in white adipose tissue. Best Pract Res Clin Endocrinol Metab 2005; 19: 589–603.

    Article  CAS  Google Scholar 

  15. Yki-Jarvinen H . Thiazolidinediones. N Engl J Med 2004; 351: 1106–1118.

    Article  Google Scholar 

  16. Ip E, Farrell G, Hall P, Robertson G, Leclercq I . Administration of the potent PPARalpha agonist, Wy-14 643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 2004; 39: 1286–1296.

    Article  CAS  Google Scholar 

  17. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ . The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003; 112: 91–100.

    Article  CAS  Google Scholar 

  18. Tilg H, Diehl AM . Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med 2000; 343: 1467–1476.

    Article  CAS  Google Scholar 

  19. Kugelmas M, Hill DB, Vivian B, Marsano L, McClain CJ . Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology 2003; 38: 413–419.

    Article  CAS  Google Scholar 

  20. Lago F, Dieguez C, Gomez-Reino J, Gualillo O . Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol 2007; 3: 716–724.

    Article  CAS  Google Scholar 

  21. Wong VW, Hui AY, Tsang SW, Chan JL, Tse AM, Chan KF . Metabolic and adipokine profile of Chinese patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2006; 4: 1154–1161.

    Article  CAS  Google Scholar 

  22. Kadowaki T, Yamauchi T . Adiponectin and adiponectin receptors. Endocr Rev 2005; 26: 439–451.

    Article  CAS  Google Scholar 

  23. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM . C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327–334.

    Article  CAS  Google Scholar 

  24. Senn JJ, Klover PJ, Nowak IA, Mooney RA . Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002; 51: 3391–3399.

    Article  CAS  Google Scholar 

  25. Guilherme A, Virbasius JV, Puri V, Czech MP . Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9: 367–377.

    Article  CAS  Google Scholar 

  26. Henriksen JH, Tronier B, Bulow JB . Kinetics of circulating endogenous insulin, C-peptide, and proinsulin in fasting nondiabetic man. Metabolism 1987; 36: 463–468.

    Article  CAS  Google Scholar 

  27. Farrell GC . Non-alcoholic steatohepatitis: what is it, and why is it important in the Asia-Pacific region? J Gastroenterol Hepatol 2003; 18: 124–138.

    Article  Google Scholar 

  28. Shen B, Yu J, Wang S, Chu ES, Wong VW, Zhou X et al. Phyllanthus urinaria ameliorates the severity of nutritional steatohepatitis both in vitro and in vivo. Hepatology 2008; 47: 473–483.

    Article  Google Scholar 

  29. Jiang C, Ting AT, Seed B . PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82–86.

    Article  CAS  Google Scholar 

  30. Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA . A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 2002; 8: 1122–1128.

    Article  CAS  Google Scholar 

  31. Akiyama TE, Sakai S, Lambert G, Nicol CJ, Matsusue K, Pimprale S et al. Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol Cell Biol 2002; 22: 2607–2619.

    Article  CAS  Google Scholar 

  32. Nicol CJ, Yoon M, Ward JM, Yamashita M, Fukamachi K, Peters JM et al. PPARgamma influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis 2004; 25: 1747–1755.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by a Research Grants Council Competitive Earmarked Research Grants CUHK 478207 and CUHK478108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Chu, E., Lam, C. et al. PPARγ is essential for protection against nonalcoholic steatohepatitis. Gene Ther 17, 790–798 (2010). https://doi.org/10.1038/gt.2010.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.41

Keywords

This article is cited by

Search

Quick links