Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of the IKK/NF-κB pathway by AAV gene transfer improves muscle regeneration in older mdx mice

Abstract

The IκB kinase (IKKα, β and the regulatory subunit IKKγ) complex regulates nuclear factor of κB (NF-κB) transcriptional activity, which is upregulated in many chronic inflammatory diseases. NF-κB signaling promotes inflammation and limits muscle regeneration in Duchenne muscular dystrophy (DMD), resulting in fibrotic and fatty tissue replacement of muscle that exacerbates the wasting process in dystrophic muscles. Here, we examined whether dominant-negative forms of IKKα (IKKα-dn) and IKKβ (IKKβ-dn) delivered by adeno-associated viral (AAV) vectors to the gastrocnemius (GAS) and tibialis anterior (TA) muscles of 1, 2 and 11-month-old mdx mice, a murine DMD model, block NF-κB activation and increase muscle regeneration. At 1 month post-treatment, the levels of nuclear NF-κB in locally treated muscle were decreased by gene transfer with either AAV-CMV-IKKα-dn or AAV-CMV-IKKβ-dn, but not by IKK wild-type controls (IKKα and β) or phosphate-buffered saline (PBS). Although treatment with AAV-IKKα-dn or AAV-IKKβ-dn vectors had no significant effect on muscle regeneration in young mdx mice treated at 1 and 2 months of age and collected 1 month later, treatment of old (11 months) mdx with AAV-CMV-IKKα-dn or AAV-CMV-IKKβ-dn significantly increased levels of muscle regeneration. In addition, there was a significant decrease in myofiber necrosis in the AAV-IKKα-dn- and AAV-IKKβ-dn-treated mdx muscle in both young and old mice. These results demonstrate that inhibition of IKKα or IKKβ in dystrophic muscle reduces the adverse effects of NF-κB signaling, resulting in a therapeutic effect. Moreover, these results clearly demonstrate the therapeutic benefits of inhibiting NF-κB activation by AAV gene transfer in dystrophic muscle to promote regeneration, particularly in older mdx mice, and block necrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hoffman EP, Monaco AP, Feener CC, Kunkel LM . Conservation of the Duchenne muscular dystrophy gene in mice and humans. Science 1987; 238: 347–350.

    Article  CAS  PubMed  Google Scholar 

  2. Lapidos KA, Kakkar R, McNally EM . The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 2004; 94: 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  3. Bonilla E, Samitt CE, Miranda AF, Hays AP, Salviati G, DiMauro S et al. Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. Cell 1988; 54: 447–452.

    Article  CAS  PubMed  Google Scholar 

  4. Koenig M, Kunkel LM . Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem 1990; 265: 4560–4566.

    CAS  PubMed  Google Scholar 

  5. Koenig M, Monaco AP, Kunkel LM . The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988; 53: 219–228.

    Article  CAS  PubMed  Google Scholar 

  6. Miranda AF, Francke U, Bonilla E, Martucci G, Schmidt B, Salviati G et al. Dystrophin immunocytochemistry in muscle culture: detection of a carrier of Duchenne muscular dystrophy. Am J Med Genet 1989; 32: 268–273.

    Article  CAS  PubMed  Google Scholar 

  7. Senter L, Luise M, Presotto C, Betto R, Teresi A, Ceoldo S et al. Interaction of dystrophin with cytoskeletal proteins: binding to talin and actin. Biochem Biophys Res Commun 1993; 192: 899–904.

    Article  CAS  PubMed  Google Scholar 

  8. McLoon LK . Focusing on fibrosis: halofuginone-induced functional improvement in the mdx mouse model of Duchenne muscular dystrophy. Am J Physiol Heart Circ Physiol 2008; 294: H1505–H1507.

    Article  CAS  PubMed  Google Scholar 

  9. Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M, Meuse L et al. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 2006; 12: 787–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yue Y, Liu M, Duan D . C-terminal-truncated microdystrophin recruits dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex and reduces muscular dystrophy in symptomatic utrophin/dystrophin double-knockout mice. Mol Ther 2006; 14: 79–87.

    Article  CAS  PubMed  Google Scholar 

  11. Wang B, Li J, Fu FH, Xiao X . Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin-deficient mice. J Orthop Res 2009; 27: 421–426.

    Article  PubMed  Google Scholar 

  12. Roman-Blas JA, Jimenez SA . NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthr Cartil 2006; 14: 839–848.

    Article  CAS  Google Scholar 

  13. Hayden MS, Ghosh S . Signaling to NF-kappaB. Genes Dev 2004; 18: 2195–2224.

    Article  CAS  PubMed  Google Scholar 

  14. Peters RT, Maniatis T . A new family of IKK-related kinases may function as I kappa B kinase kinases. Biochim Biophys Acta 2001; 1471: M57–M62.

    CAS  PubMed  Google Scholar 

  15. Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000; 18: 621–663.

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Verma IM . NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2: 725–734.

    Article  CAS  PubMed  Google Scholar 

  17. Messina S, Bitto A, Aguennouz M, Minutoli L, Monici MC, Altavilla D et al. Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 2006; 198: 234–241.

    Article  CAS  PubMed  Google Scholar 

  18. Ladner KJ, Caligiuri MA, Guttridge DC . Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 2003; 278: 2294–2303.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar A, Boriek AM . Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 2003; 17: 386–396.

    Article  CAS  PubMed  Google Scholar 

  20. Baghdiguian S, Richard I, Martin M, Coopman P, Beckmann JS, Mangeat P et al. Pathophysiology of limb girdle muscular dystrophy type 2A: hypothesis and new insights into the IkappaBalpha/NF-kappaB survival pathway in skeletal muscle. J Mol Med 2001; 79: 254–261.

    Article  CAS  PubMed  Google Scholar 

  21. Bakkar N, Wang J, Ladner KJ, Wang H, Dahlman JM, Carathers M et al. IKK/NF-kappaB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J Cell Biol 2008; 180: 787–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Acharyya S, Villalta SA, Bakkar N, Bupha-Intr T, Janssen PM, Carathers M et al. Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 2007; 117: 889–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang B, Li J, Xiao X . Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000; 97: 13714–13719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watchko J, O′Day T, Wang B, Zhou L, Tang Y, Li J et al. Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther 2002; 13: 1451–1460.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS et al. Sustained AAV-mediated dystrophin expression in a canine Model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 2007; 15: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  26. Heslop L, Morgan JE, Partridge TA . Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci 2000; 113 (Pt 12): 2299–2308.

    CAS  PubMed  Google Scholar 

  27. Anderson JE . The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. J Exp Biol 2006; 209: 2276–2292.

    Article  CAS  PubMed  Google Scholar 

  28. Carlson CG, Samadi A, Siegel A . Chronic treatment with agents that stabilize cytosolic IkappaB-alpha enhances survival and improves resting membrane potential in MDX muscle fibers subjected to chronic passive stretch. Neurobiol Dis 2005; 20: 719–730.

    Article  CAS  PubMed  Google Scholar 

  29. Tas SW, Adriaansen J, Hajji N, Bakker AC, Firestein GS, Vervoordeldonk MJ et al. Amelioration of arthritis by intraarticular dominant negative Ikk beta gene therapy using adeno-associated virus type 5. Hum Gene Ther 2006; 17: 821–832.

    Article  CAS  PubMed  Google Scholar 

  30. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ . The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 1989; 244: 1578–1580.

    Article  CAS  PubMed  Google Scholar 

  31. Bulfield G, Siller WG, Wight PA, Moore KJ . X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 1984; 81: 1189–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ . The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 1989; 244: 1578–1580.

    Article  CAS  PubMed  Google Scholar 

  33. Torres LF, Duchen LW . The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates. Brain 1987; 110 (Pt 2): 269–299.

    Article  PubMed  Google Scholar 

  34. Bonizzi G, Karin M . The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280–288.

    Article  CAS  PubMed  Google Scholar 

  35. Demoule A, Divangahi M, Yahiaoui L, Danialou G, Gvozdic D, Labbe K et al. Endotoxin triggers nuclear factor-kappaB-dependent up-regulation of multiple proinflammatory genes in the diaphragm. Am J Respir Crit Care Med 2006; 174: 646–653.

    Article  CAS  PubMed  Google Scholar 

  36. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang B, Li J, Qiao C, Chen C, Hu P, Zhu X et al. A canine minidystrophin is functional and therapeutic in mdx mice. Gene Ther 2008; 15: 1099–1106.

    Article  CAS  PubMed  Google Scholar 

  38. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin Jr AS . NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 1999; 19: 5785–5799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Straub V, Rafael JA, Chamberlain JS, Campbell KP . Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J Cell Biol 1997; 139: 375–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Department of Defense (W81XWH-06-1-0406 subcontract to BW and W81XWH-06-1-0406 to PRC), the Pittsburgh Foundation and internal funds from the Department of Orthopaedic Surgery, University of Pittsburgh. We thank Jonathan Proto for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Disclaimer

The authors take full responsibility for the contents of this paper, which do not represent the views of the Department of Veterans Affairs or the United States Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Reay, D., Salay, M. et al. Inhibition of the IKK/NF-κB pathway by AAV gene transfer improves muscle regeneration in older mdx mice. Gene Ther 17, 1476–1483 (2010). https://doi.org/10.1038/gt.2010.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.110

Keywords

This article is cited by

Search

Quick links