Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel long non-coding RNA in the rheumatoid arthritis risk locus TRAF1-C5 influences C5 mRNA levels

Abstract

Long non-coding RNAs (lncRNAs) can regulate the transcript levels of genes in the same genomic region. These locally acting lncRNAs have been found deregulated in human disease and some have been shown to harbour quantitative trait loci (eQTLs) in autoimmune diseases. However, lncRNAs linked to the transcription of candidate risk genes in loci associated to rheumatoid arthritis (RA) have not yet been identified. The TRAF1 and C5 risk locus shows evidence of multiple eQTLs and transcription of intergenic non-coding sequences. Here, we identified a non-coding transcript (C5T1lncRNA) starting in the 3′ untranslated region (UTR) of C5. RA-relevant cell types express C5T1lncRNA and RNA levels are further enhanced by specific immune stimuli. C5T1lncRNA is expressed predominantly in the nucleus and its expression correlates positively with C5 mRNA in various tissues (P=0.001) and in peripheral blood mononuclear cells (P=0.02) indicating transcriptional co-regulation. Knockdown results in a concurrent decrease in C5 mRNA levels but not of other neighbouring genes. Overall, our data show the identification of a novel lncRNA C5T1lncRNA that is fully located in the associated region and influences transcript levels of C5, a gene previously linked to RA pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Esteller M . Non-coding RNAs in human disease. Nat Rev Genet 2011; 12: 861–874.

    Article  CAS  Google Scholar 

  2. Churchill GA, Holland MJ, Draghici S, Khatri P, Eklund AC, Szallasi Z et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007; 316: 1484–1488.

    Article  Google Scholar 

  3. Hangauer MJ, Vaughn IW, McManus MT . Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 2013; 9: e1003569.

    Article  CAS  Google Scholar 

  4. Van Leeuwen S, Mikkers H . Long non-coding RNAs: guardians of development. Differentiation 2010; 80: 175–183.

    Article  CAS  Google Scholar 

  5. Geisler S, Coller J . RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013; 14: 699–712.

    Article  CAS  Google Scholar 

  6. Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi Y et al. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep 2014; 4: 6088.

    Article  CAS  Google Scholar 

  7. Wang X, Arai S, Song X, Reichart D, Du K, Pascual G et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 2008; 454: 126–130.

    Article  CAS  Google Scholar 

  8. Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010; 38: 662–674.

    Article  CAS  Google Scholar 

  9. Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 2008; 15: 668–679.

    Article  CAS  Google Scholar 

  10. Tsai M, Manor O, Wan Y, Mosammaparast N, Wang JK, Shi Y et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689–693.

    Article  CAS  Google Scholar 

  11. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32: 232–246.

    Article  CAS  Google Scholar 

  12. Nagano T, Mitchell JA, Sanz LA, Pauler FM . The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 2008; 322: 1717–1720.

    Article  CAS  Google Scholar 

  13. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1775–1789.

    Article  CAS  Google Scholar 

  14. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 2014; 42: D1001–D1006.

    Article  CAS  Google Scholar 

  15. Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 2013; 9: e1003588.

    Article  CAS  Google Scholar 

  16. Kurreeman FaS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, Stoeken-Rijsbergen G et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med 2007; 4: e278.

    Article  Google Scholar 

  17. Plenge RM, Seielstad M, Padyukov L, Lee T, Remmers EF, Ding B et al. TRAF1–C5 as a risk locus for rheumatoid arthritis — a genomewide study. NEJM 2007; 357: 1199–1209.

    Article  CAS  Google Scholar 

  18. Lavorgna A, De Filippi R, Formisano S, Leonardi A . TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol 2009; 46: 3278–3282.

    Article  CAS  Google Scholar 

  19. Ma X, Xu S . TNF inhibitor therapy for rheumatoid arthritis. Biomed Rep 2013; 1: 177–184.

    Article  CAS  Google Scholar 

  20. Cooke TD, Hurd ER, Jasin HE, Bienenstock J, Ziff M . Identification of immunoglobulins and complement in rheumatoid articular collagenous tissues. Arthritis Rheum 1975; 18: 541–551.

    Article  CAS  Google Scholar 

  21. Wang Y, Kristan J, Hao L, Lenkoski CS, Shen Y, Matis LA . A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J Immunol 2000; 164: 4340–4347.

    Article  CAS  Google Scholar 

  22. Dunkelberger JR, Song W-C . Complement and its role in innate and adaptive immune responses. Cell Res 2010; 20: 34–50.

    Article  CAS  Google Scholar 

  23. Su X, Li S, Meng M, Qian W, Xie W, Chen D et al. TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur J Immunol 2006; 36: 199–206.

    Article  CAS  Google Scholar 

  24. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106: 9362–9367.

    Article  CAS  Google Scholar 

  25. Messemaker T, Toes REM, Kurreeman F, Mikkers HMM . Comment on “functional analysis of a complement polymorphism (rs17611) associated with rheumatoid arthritis. J Immunol 2015; 195: 3–4.

    Article  CAS  Google Scholar 

  26. Ding J, Eyre S, Worthington J . Genetics of RA susceptibility, what comes next? RMD Open 2015; 1: e000028–e000028.

    Article  Google Scholar 

  27. Messemaker TC, Huizinga TW, Kurreeman F . Immunogenetics of rheumatoid arthritis: understanding functional implications. J Autoimmun 2015; 64: 74–81.

    Article  CAS  Google Scholar 

  28. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2013; 506: 376–381.

    Article  Google Scholar 

  29. Volders P-J, Helsens K, Wang X, Menten B, Martens L, Gevaert K et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 2013; 41: D246–D251.

    Article  CAS  Google Scholar 

  30. Chakraborty S, Deb A, Maji RK, Saha S, Ghosh Z . LncRBase: an enriched resource for lncRNA information. PLoS One 2014; 9: e108010.

    Article  Google Scholar 

  31. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-vega B, Regev A et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25: 1915–1927.

    Article  CAS  Google Scholar 

  32. Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 2012; 30: 99–104.

    Article  CAS  Google Scholar 

  33. Warfel AH . Specific Inhibition of nuclear RNA polymerase II by a-Amanitin. Science 1970; 170: 447–449.

    Article  Google Scholar 

  34. Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010; 465: 182–187.

    Article  CAS  Google Scholar 

  35. Ren B . Transcription: enhancers make non-coding RNA. Nature 2010; 465: 173–174.

    Article  CAS  Google Scholar 

  36. Tuck AC, Tollervey D . A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 2013; 154: 996–1009.

    Article  CAS  Google Scholar 

  37. Liu X, Gorovsky MA . Mapping the 5′ and 3′ ends of Tetrahymena therrmophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res 1993; 21: 4954–4960.

    Article  CAS  Google Scholar 

  38. Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 2015; 16: 22.

    Article  CAS  Google Scholar 

  39. Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C . Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 2009; 37: e67.

    Article  Google Scholar 

  40. Kozak M, Limited IRLP . An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 1987; 15: 8125–8148.

    Article  CAS  Google Scholar 

  41. Nishikawa T, Ota T, Isogai T . Prediction whether a human cDNA sequence contains initiation codon by combining statistical information and similarity with protein sequences. Bioinformatics 2000; 16: 960–967.

    Article  CAS  Google Scholar 

  42. Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 2007; 35: W345–W349.

    Article  Google Scholar 

  43. Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 2014; 53: 393–406.

    Article  CAS  Google Scholar 

  44. Marín-Béjar O, Marchese FP, Athie A, Sánchez Y, González J, Segura V et al. Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biol 2013; 14: R104.

    Article  Google Scholar 

  45. Lee JT, Bartolomei MS . X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013; 152: 1308–1323.

    Article  CAS  Google Scholar 

  46. Han L, Zhang E, Yin D, Kong R, Xu T, Chen W et al. Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death Dis 2015; 6: e1665.

    Article  CAS  Google Scholar 

  47. IIott NE, Heward JA, Roux B, Tsitsiou E, Fenwick PS, Lenzi L et al. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun 2014; 5: 3979.

    Article  Google Scholar 

  48. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 2013; 41: D983–D986.

    Article  CAS  Google Scholar 

  49. Kumar V, Westra H-J, Karjalainen J, Zhernakova DV, Esko T, Hrdlickova B et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet 2013; 9: e1003201.

    Article  CAS  Google Scholar 

  50. Kallen AN, Zhou X-B, Xu J, Qiao C, Ma J, Yan L et al. The imprinted H19 LncRNA antagonizes Let-7 microRNAs. Mol Cell 2013; 52: 101–112.

    Article  CAS  Google Scholar 

  51. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  Google Scholar 

  52. Engreitz JM, Sirokman K, McDonel P, Shishkin AA, Surka C, Russell P et al. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell 2014; 159: 188–199.

    Article  CAS  Google Scholar 

  53. Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 2013; 9: e1003470.

    Article  CAS  Google Scholar 

  54. Gong C, Maquat LE . lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3’ UTRs via Alu elements. Nature 2011; 470: 284–288.

    Article  CAS  Google Scholar 

  55. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 2013; 493: 231–235.

    Article  CAS  Google Scholar 

  56. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of B-secretase expression. Nat Med 2008; 14: 723–730.

    Article  CAS  Google Scholar 

  57. Naslavsky MS, Crovella S, Lima Filho JL, Rocha CRC . The sound of silence: human beta-defensin-1 gene untranslated SNPs change the predicted mRNA secondary structure in a length-dependent manner. Immunol Lett 2010; 129: 53–55.

    Article  CAS  Google Scholar 

  58. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  Google Scholar 

  59. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  60. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res 2015; 43 (Database issue): D670–D681.

    Article  CAS  Google Scholar 

  61. Bai Y, Soda Y, Izawa K, Tanabe T, Kang X, Tojo A et al. Effective transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector. Gene Ther 2003; 10: 1446–1457.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank SJ Cramer and M. Rabelink for the generation of shRNA-containing lentiviral particles and H van Dam for providing reagents. We also thank the volunteers for donating blood and AWG Berendsen for experimental support. Finally we thank RC Hoeben and A Zaldumbide for comments and critical reading of the manuscript. This work was supported by the Dutch Arthritis Foundation, The Netherlands. F Kurreeman is supported via UNESCO-L’Oreal for Women in Science Fellowship, Marie Curie FP7 Outgoing Fellowship and an LUMC Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H M M Mikkers or F Kurreeman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messemaker, T., Frank-Bertoncelj, M., Marques, R. et al. A novel long non-coding RNA in the rheumatoid arthritis risk locus TRAF1-C5 influences C5 mRNA levels. Genes Immun 17, 85–92 (2016). https://doi.org/10.1038/gene.2015.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.54

This article is cited by

Search

Quick links