Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The helminth Trichuris suis suppresses TLR4-induced inflammatory responses in human macrophages

Abstract

Recent clinical trials in patients with inflammatory diseases like multiple sclerosis (MS) or inflammatory bowel disease (IBD) have shown the beneficial effects of probiotic helminth administration, although the underlying mechanism of action remains largely unknown. Potential cellular targets may include innate immune cells that propagate inflammation in these diseases, like pro-inflammatory macrophages. We here investigated the effects of the helminth Trichuris suis soluble products (SPs) on the phenotype and function of human inflammatory (granulocyte-macrophage colony-stimulating factor (GM-CSF)-differentiated) macrophages. Interestingly, we here show that T. suis SPs potently skew inflammatory macrophages into a more anti-inflammatory state in a Toll-like receptor 4 (TLR4)-dependent manner, and less effects are seen when stimulating macrophages with TLR2 or -3 ligands. Gene microarray analysis of GM-CSF-differentiated macrophages further revealed that many TLR4-induced inflammatory mediators, including interleukin (IL)-12B, CCL1 and CXCL9, are downregulated by T. suis SPs. In particular, we observed a strong reduction in the expression and function of P2RX7, a purinergic receptor involved in macrophage inflammation, leading to reduced IL-1β secretion. In conclusion, we show that T. suis SPs suppress a broad range of inflammatory pathways in GM-CSF-differentiated macrophages in a TLR4-dependent manner, thereby providing enhanced mechanistic insight into the therapeutic potential of this helminth for patients with inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bach JF . The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347: 911–920.

    Article  Google Scholar 

  2. Zaccone P, Cooke A . Vaccine against autoimmune disease: can helminths or their products provide a therapy? Curr Opin Immunol 2013; 25: 418–423.

    Article  CAS  Google Scholar 

  3. Strachan DP . Hay fever, hygiene, and household size. BMJ 1989; 299: 1259–1260.

    Article  CAS  Google Scholar 

  4. Weinstock JV, Elliott DE . Helminths and the IBD hygiene hypothesis. Inflamm Bowel Dis 2009; 15: 128–133.

    Article  Google Scholar 

  5. Fleming JO, Cook TD . Multiple sclerosis and the hygiene hypothesis. Neurology 2006; 67: 2085–2086.

    Article  Google Scholar 

  6. Bager P, Arnved J, Ronborg S, Wohlfahrt J, Poulsen LK, Westergaard T et al. Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol 2010; 125: 123–30 e1-3.

    Article  Google Scholar 

  7. Feary JR, Venn AJ, Mortimer K, Brown AP, Hooi D, Falcone FH et al. Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin Exp Allergy 2010; 40: 299–306.

    Article  CAS  Google Scholar 

  8. Correale J, Farez M . Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 2007; 61: 97–108.

    Article  CAS  Google Scholar 

  9. Correale J, Farez MF . The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol 2011; 233: 6–11.

    Article  CAS  Google Scholar 

  10. Fleming JO, Isaak A, Lee JE, Luzzio CC, Carrithers MD, Cook TD et al. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler 2011; 17: 743–754.

    Article  CAS  Google Scholar 

  11. Kuijk LM, Klaver EJ, Kooij G, van der Pol SM, Heijnen P, Bruijns SC et al. Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation. Mol Immunol 2012; 51: 210–218.

    Article  CAS  Google Scholar 

  12. Murray PJ, Wynn TA . Protective and pathogenic functions of macrophage subsets. Nat Rev 2011; 11: 723–737.

    CAS  Google Scholar 

  13. Mosser DM, Edwards JP . Exploring the full spectrum of macrophage activation. Nat Rev 2008; 8: 958–969.

    CAS  Google Scholar 

  14. Elliott DE, Weinstock JV . Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann N Y Acad Sci 2012; 1247: 83–96.

    Article  CAS  Google Scholar 

  15. Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 2013; 10: 35.

    Article  CAS  Google Scholar 

  16. Klaver EJ, Kuijk LM, Laan LC, Kringel H, van Vliet SJ, Bouma G et al. Trichuris suis-induced modulation of human dendritic cell function is glycan-mediated. Int J Parasitol 2013; 43: 191–200.

    Article  CAS  Google Scholar 

  17. Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH . Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 2006; 79: 285–293.

    Article  CAS  Google Scholar 

  18. Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011; 12: 560–567.

    Article  CAS  Google Scholar 

  19. McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med 2001; 194: 873–882.

    Article  CAS  Google Scholar 

  20. Schlee M . Master sensors of pathogenic RNA - RIG-I like receptors. Immunobiology 2013; 218: 1322–1335.

    Article  CAS  Google Scholar 

  21. Gouwy M, Struyf S, Leutenez L, Portner N, Sozzani S, Van Damme J . Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells. Immunobiology 2014; 219: 218–229.

    Article  CAS  Google Scholar 

  22. Donnelly-Roberts DL, Jarvis MF . Discovery of P2 × 7 receptor-selective antagonists offers new insights into P2 × 7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 2007; 151: 571–579.

    Article  CAS  Google Scholar 

  23. Hiemstra IH, Klaver EJ, Vrijland K, Kringel H, Andreasen A, Bouma G et al. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells. Mol Immunol 2014; 60: 1–7.

    Article  CAS  Google Scholar 

  24. Fava F, Danese S . Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 2011; 17: 557–566.

    Article  CAS  Google Scholar 

  25. Diaz A, Allen JE . Mapping immune response profiles: the emerging scenario from helminth immunology. Eur J Immunol 2007; 37: 3319–3326.

    Article  CAS  Google Scholar 

  26. Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TR, Reedquist KA et al. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods 2012; 375: 196–206.

    Article  CAS  Google Scholar 

  27. Fassbender K, Ragoschke A, Rossol S, Schwartz A, Mielke O, Paulig A et al. Increased release of interleukin-12p40 in MS: association with intracerebral inflammation. Neurology 1998; 51: 753–758.

    Article  CAS  Google Scholar 

  28. Longbrake EE, Racke MK . Why did IL-12/IL-23 antibody therapy fail in multiple sclerosis? Expert Rev Neurother 2009; 9: 319–321.

    Article  CAS  Google Scholar 

  29. Shin T, Kang B, Tanuma N, Matsumoto Y, Wie M, Ahn M et al. Intrathecal administration of endothelin-1 receptor antagonist ameliorates autoimmune encephalomyelitis in Lewis rats. NeuroReport 2001; 12: 1465–1468.

    Article  CAS  Google Scholar 

  30. Cunningham ME, Huribal M, Bala RJ, McMillen MA . Endothelin-1 and endothelin-4 stimulate monocyte production of cytokines. Crit Care Med 1997; 25: 958–964.

    Article  CAS  Google Scholar 

  31. Majetschak M . Extracellular ubiquitin: immune modulator and endogenous opponent of damage-associated molecular pattern molecules. J Leukoc Biol 2011; 89: 205–219.

    Article  CAS  Google Scholar 

  32. Cesaro A, Brest P, Hofman V, Hebuterne X, Wildman S, Ferrua B et al. Amplification loop of the inflammatory process is induced by P2 × 7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration. Am J Physiol 2010; 299: G32–G42.

    CAS  Google Scholar 

  33. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C et al. COX-2, CB2 and P2 × 7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 2006; 6: 12.

    Article  Google Scholar 

  34. Dujmovic I, Mangano K, Pekmezovic T, Quattrocchi C, Mesaros S, Stojsavljevic N et al. The analysis of IL-1 beta and its naturally occurring inhibitors in multiple sclerosis: The elevation of IL-1 receptor antagonist and IL-1 receptor type II after steroid therapy. J Neuroimmunol 2009; 207: 101–106.

    Article  CAS  Google Scholar 

  35. Narcisse L, Scemes E, Zhao Y, Lee SC, Brosnan CF . The cytokine IL-1beta transiently enhances P2 × 7 receptor expression and function in human astrocytes. Glia 2005; 49: 245–258.

    Article  Google Scholar 

  36. Ambrosini E, Remoli ME, Giacomini E, Rosicarelli B, Serafini B, Lande R et al. Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J Neuropathol Exp Neurol 2005; 64: 706–715.

    Article  CAS  Google Scholar 

  37. Wagner DR, Kubota T, Sanders VJ, McTiernan CF, Feldman AM . Differential regulation of cardiac expression of IL-6 and TNF-alpha by A2- and A3-adenosine receptors. Am J Physiol 1999; 276 (6 Pt 2): H2141–H2147.

    CAS  PubMed  Google Scholar 

  38. Zhang J, Tachado SD, Patel N, Zhu J, Imrich A, Manfruelli P et al. Negative regulatory role of mannose receptors on human alveolar macrophage proinflammatory cytokine release in vitro. J Leukoc Biol 2005; 78: 665–674.

    Article  CAS  Google Scholar 

  39. Fleming JO . Helminth therapy and multiple sclerosis. Int J Parasitol 2013; 43: 259–274.

    Article  CAS  Google Scholar 

  40. Fabriek BO, Van Haastert ES, Galea I, Polfliet MM, Dopp ED, Van Den Heuvel MM et al. CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 2005; 51: 297–305.

    Article  Google Scholar 

  41. Schirmer SH, Fledderus JO, van der Laan AM, van der Pouw-Kraan TC, Moerland PD, Volger OL et al. Suppression of inflammatory signaling in monocytes from patients with coronary artery disease. J Mol Cell Cardiol 2009; 46: 177–185.

    Article  CAS  Google Scholar 

  42. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  43. Kooij G, Mizee MR, van Horssen J, Reijerkerk A, Witte ME, Drexhage JA et al. Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain 2011; 134 (Pt 2): 555–570.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Multiple Sclerosis Society (PP1686) and the Dutch MS Research Foundation (MS 11-771).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Kooij or I van Die.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottow, M., Klaver, E., van der Pouw Kraan, T. et al. The helminth Trichuris suis suppresses TLR4-induced inflammatory responses in human macrophages. Genes Immun 15, 477–486 (2014). https://doi.org/10.1038/gene.2014.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.38

This article is cited by

Search

Quick links