Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variants of the HLA-A, HLA-B and AIF1 loci show independent associations with type 1 diabetes in Norwegian families

Abstract

The main genetic predisposition to type 1 diabetes (T1D) is known to be conferred by the HLA-DRB1, -DQA1 and -DQB1 genes in the major histocompatibility complex (MHC). Other genetic factors within this complex are known to contribute, but their identity has often been controversial. This picture is shared with several other autoimmune diseases (AIDs). Moreover, as common genetic factors are known to exist between AIDs, associations reported with other AIDs may also be involved in T1D. In this study, we have used these observations in a candidate gene approach to look for additional MHC risk factors in T1D. Using complementary conditional methods (involving conditional logistic regression and family-based haplotype tests) and analyses of linkage disequilibrium (LD) patterns, we confirmed association for alleles of the HLA-A and HLA-B genes and found preliminary evidence for a novel association of a single-nucleotide polymorphism (rs2259571) in the AIF1 gene, independent of the DRB1-DQA1-DQB1 genes and of each other. However, no evidence of independent associations for a number of previously suggested candidate polymorphisms was detected. Our results illustrate the importance of a comprehensive adjustment for LD effects when performing association studies in this complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 2008; 57: 1084–1092.

    Google Scholar 

  2. Thomson G, Valdes AM, Noble JA, Kockum I, Grote MN, Najman J et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens 2007; 70: 110–127.

    Google Scholar 

  3. Nejentsev S, Howson JM, Walker NM, Szeszko J, Field SF, Stevens HE et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007; 450: 887–892.

    Google Scholar 

  4. Aly TA, Baschal EE, Jahromi MM, Fernando MS, Babu SR, Fingerlin TE et al. Analysis of SNPs identifies major type 1A diabetes locus telomeric of the MHC. Diabetes 2008; 57: 770–776.

    Google Scholar 

  5. Nejentsev S, Reijonen H, Adojaan B, Kovalchuk L, Sochnevs A, Schwartz EI et al. The effect of HLA-B allele on the IDDM risk defined by DRB1*04 subtypes and DQB1*0302. Diabetes 1997; 46: 1888–1892.

    Google Scholar 

  6. Valdes AM, Erlich HA, Noble JA . Human leukocyte antigen class I B and C loci contribute to type 1 diabetes (T1D) susceptibility and age at T1D onset. Hum Immunol 2005; 66: 301–313.

    Google Scholar 

  7. Aly TA, Ide A, Jahromi MM, Barker JM, Fernando MS, Babu SR et al. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci USA 2006; 103: 14074–14079.

    Google Scholar 

  8. Cheong KY, Allcock RJ, Eerligh P, Witt CS, Christiansen FT, McCann V et al. Localization of central MHC genes influencing type I diabetes. Hum Immunol 2001; 62: 1363–1370.

    Google Scholar 

  9. Lie BA, Todd JA, Pociot F, Nerup J, Akselsen HE, Joner G et al. The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes at least one non-class II gene. Am J Hum Genet 1999; 64: 793–800.

    Google Scholar 

  10. Nejentsev S, Gombos Z, Laine AP, Veijola R, Knip M, Simell O et al. Non-class II HLA gene associated with type 1 diabetes maps to the 240-kb region near HLA-B. Diabetes 2000; 49: 2217–2221.

    Google Scholar 

  11. Johansson S, Lie BA, Todd JA, Pociot F, Nerup J, Cambon-Thomsen A et al. Evidence of at least two type 1 diabetes susceptibility genes in the HLA complex distinct from HLA-DQB1, -DQA1 and -DRB1. Genes Immun 2003; 4: 46–53.

    Google Scholar 

  12. Zavattari P, Lampis R, Motzo C, Loddo M, Mulargia A, Whalen M et al. Conditional linkage disequilibrium analysis of a complex disease superlocus, IDDM1 in the HLA region, reveals the presence of independent modifying gene effects influencing the type 1 diabetes risk encoded by the major HLA-DQB1, -DRB1 disease loci. Hum Mol Genet 2001; 10: 881–889.

    Google Scholar 

  13. Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5: 889–899.

    Google Scholar 

  14. Becker KG, Simon RM, Bailey-Wilson JE, Freidlin B, Biddison WE, McFarland HF et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 1998; 95: 9979–9984.

    Google Scholar 

  15. Pearce SH, Merriman TR . Genetic progress towards the molecular basis of autoimmunity. Trends Mol Med 2006; 12: 90–98.

    Google Scholar 

  16. Allcock RJ, Windsor L, Gut IG, Kucharzak R, Sobre L, Lechner D et al. High-density SNP genotyping defines 17 distinct haplotypes of the TNF block in the Caucasian population: implications for haplotype tagging. Hum Mutat 2004; 24: 517–525.

    Google Scholar 

  17. Thomson G, Barcellos LF, Valdes AM . Searching for additional disease loci in a genomic region. Adv Genet 2008; 60: 253–292.

    Google Scholar 

  18. Eike MC, Becker T, Humphreys K, Olsson M, Lie BA . Conditional analyses on the T1DGC MHC dataset: novel associations with type 1 diabetes around HLA-G and confirmation of HLA-B. Genes Immun (advance online publication, 2 October 2008; doi:10.1038/gene.2008.74).

  19. Noble JA, Martin A, Valdes AM, Lane JA, Galgani A, Petrone A et al. Type 1 diabetes risk for human leukocyte antigen (HLA)-DR3 haplotypes depends on genotypic context: association of DPB1 and HLA class I loci among DR3- and DR4-matched Italian patients and controls. Hum Immunol 2008; 69: 291–300.

    Google Scholar 

  20. Noble JA, Valdes AM, Bugawan TL, Apple RJ, Thomson G, Erlich HA . The HLA class I A locus affects susceptibility to type 1 diabetes. Hum Immunol 2002; 63: 657–664.

    Google Scholar 

  21. Tait BD, Colman PG, Morahan G, Marchinovska L, Dore E, Gellert S et al. HLA genes associated with autoimmunity and progression to disease in type 1 diabetes. Tissue Antigens 2003; 61: 146–153.

    Google Scholar 

  22. Nakanishi K, Kobayashi T, Murase T, Naruse T, Nose Y, Inoko H . Human leukocyte antigen-A24 and -DQA1*0301 in Japanese insulin-dependent diabetes mellitus: independent contributions to susceptibility to the disease and additive contributions to acceleration of beta-cell destruction. J Clin Endocrinol Metab 1999; 84: 3721–3725.

    Google Scholar 

  23. Nakanishi K, Kobayashi T, Murase T, Nakatsuji T, Inoko H, Tsuji K et al. Association of HLA-A24 with complete beta-cell destruction in IDDM. Diabetes 1993; 42: 1086–1093.

    Google Scholar 

  24. Nakanishi K, Inoko H . Combination of HLA-A24, -DQA1*03, and -DR9 contributes to acute-onset and early complete beta-cell destruction in type 1 diabetes: longitudinal study of residual beta-cell function. Diabetes 2006; 55: 1862–1868.

    Google Scholar 

  25. Tait BD, Harrison LC, Drummond BP, Stewart V, Varney MD, Honeyman MC . HLA antigens and age at diagnosis of insulin-dependent diabetes mellitus. Hum Immunol 1995; 42: 116–122.

    Google Scholar 

  26. Fujisawa T, Ikegami H, Kawaguchi Y, Yamato E, Takekawa K, Nakagawa Y et al. Class I HLA is associated with age-at-onset of IDDM, while class II HLA confers susceptibility to IDDM. Diabetologia 1995; 38: 1493–1495.

    Google Scholar 

  27. Valdes AM, Thomson G, Erlich HA, Noble JA . Association between type 1 diabetes age of onset and HLA among sibling pairs. Diabetes 1999; 48: 1658–1661.

    Google Scholar 

  28. de Jersey J, Snelgrove SL, Palmer SE, Teteris SA, Mullbacher A, Miller JF et al. Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc Natl Acad Sci USA 2007; 104: 1295–1300.

    Google Scholar 

  29. Kay TW, Parker JL, Stephens LA, Thomas HE, Allison J . RIP-beta 2-microglobulin transgene expression restores insulitis, but not diabetes, in beta 2-microglobulin null nonobese diabetic mice. J Immunol 1996; 157: 3688–3693.

    Google Scholar 

  30. Utsugi T, Yoon JW, Park BJ, Imamura M, Averill N, Kawazu S et al. Major histocompatibility complex class I-restricted infiltration and destruction of pancreatic islets by NOD mouse-derived beta-cell cytotoxic CD8+ T-cell clones in vivo. Diabetes 1996; 45: 1121–1131.

    Google Scholar 

  31. Sumida T, Furukawa M, Sakamoto A, Namekawa T, Maeda T, Zijlstra M et al. Prevention of insulitis and diabetes in beta 2-microglobulin-deficient non-obese diabetic mice. Int Immunol 1994; 6: 1445–1449.

    Google Scholar 

  32. Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC . Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant. Diabetes 1994; 43: 505–509.

    Google Scholar 

  33. Wicker LS, Leiter EH, Todd JA, Renjilian RJ, Peterson E, Fischer PA et al. Beta 2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes 1994; 43: 500–504.

    Google Scholar 

  34. Brynedal B, Duvefelt K, Jonasdottir G, Roos IM, Akesson E, Palmgren J et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS ONE 2007; 2: e664.

    Google Scholar 

  35. Fogdell-Hahn A, Ligers A, Gronning M, Hillert J, Olerup O . Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 2000; 55: 140–148.

    Google Scholar 

  36. Harbo HF, Lie BA, Sawcer S, Celius EG, Dai KZ, Oturai A et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 2004; 63: 237–247.

    Google Scholar 

  37. Zeggini E, Donn RP, Ollier WE, Thomson W . Evidence for linkage of HLA loci in juvenile idiopathic oligoarthritis: independent effects of HLA-A and HLA-DRB1. Arthritis Rheum 2002; 46: 2716–2720.

    Google Scholar 

  38. Hall PJ, Burman SJ, Laurent MR, Briggs DC, Venning HE, Leak AM et al. Genetic susceptibility to early onset pauciarticular juvenile chronic arthritis: a study of HLA and complement markers in 158 British patients. Ann Rheum Dis 1986; 45: 464–474.

    Google Scholar 

  39. Rahman P . Genetics of ankylosing spondylitis: an update. Curr Rheumatol Rep 2007; 9: 383–389.

    Google Scholar 

  40. Smerdel-Ramoya A, Finholt C, Lilleby V, Gilboe IM, Harbo HF, Maslinski S et al. Systemic lupus erythematosus and the extended major histocompatibility complex—evidence for several predisposing loci. Rheumatology (Oxford) 2005; 44: 1368–1373.

    Google Scholar 

  41. Liu G, Ma H, Jiang L, Zhao Y . Allograft inflammatory factor-1 and its immune regulation. Autoimmunity 2007; 40: 95–102.

    Google Scholar 

  42. Chen ZW, Ahren B, Ostenson CG, Cintra A, Bergman T, Moller C et al. Identification, isolation, and characterization of daintain (allograft inflammatory factor 1), a macrophage polypeptide with effects on insulin secretion and abundantly present in the pancreas of prediabetic BB rats. Proc Natl Acad Sci USA 1997; 94: 13879–13884.

    Google Scholar 

  43. Kimura M, Kawahito Y, Obayashi H, Ohta M, Hara H, Adachi T et al. A critical role for allograft inflammatory factor-1 in the pathogenesis of rheumatoid arthritis. J Immunol 2007; 178: 3316–3322.

    Google Scholar 

  44. Noble JA, Valdes AM, Lane JA, Green AE, Erlich HA . Linkage disequilibrium with predisposing DR3 haplotypes accounts for apparent effects of tumor necrosis factor and lymphotoxin-alpha polymorphisms on type 1 diabetes susceptibility. Hum Immunol 2006; 67: 999–1004.

    Google Scholar 

  45. Morgan AW, Haroon-Rashid L, Martin SG, Gooi HC, Worthington J, Thomson W et al. The shared epitope hypothesis in rheumatoid arthritis: evaluation of alternative classification criteria in a large UK Caucasian cohort. Arthritis Rheum 2008; 58: 1275–1283.

    Google Scholar 

  46. Bjørnvold M, Undlien DE, Joner G, Dahl-Jørgensen K, Njølstad PR, Akselsen HE et al. Joint effects of HLA, INS, PTPN22 and CTLA4 genes on the risk of type 1 diabetes. Diabetologia 2008; 51: 589–596.

    Google Scholar 

  47. EURODIAB ACE Study Group. Variation and trends in incidence of childhood diabetes in Europe. EURODIAB ACE Study Group. Lancet 2000; 355: 873–876.

    Google Scholar 

  48. Cervin C, Lyssenko V, Bakhtadze E, Lindholm E, Nilsson P, Tuomi T et al. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes 2008; 57: 1433–1437.

    Google Scholar 

  49. O’Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Google Scholar 

  50. Wigginton JE, Abecasis GR . PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005; 21: 3445–3447.

    Google Scholar 

  51. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Google Scholar 

  52. Cordell HJ, Clayton DG . A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002; 70: 124–141.

    Google Scholar 

  53. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Google Scholar 

  54. Becker T, Knapp M . Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet Epidemiol 2004; 27: 21–32.

    Google Scholar 

Download references

Acknowledgements

This study was supported by JDRF Grant 1-2004-793, by the Novo Nordisk Foundation and the Norwegian Diabetes Association. M Olsson was supported by SSF Grant A3 02:129. We thank CIGENE, Ås, Norway, for performing the genotyping with the SNPlex and MassARRAY assays and Linda Haugse for assistance in HLA genotyping. This research utilizes resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD) and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Eike.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eike, M., Olsson, M., Undlien, D. et al. Genetic variants of the HLA-A, HLA-B and AIF1 loci show independent associations with type 1 diabetes in Norwegian families. Genes Immun 10, 141–150 (2009). https://doi.org/10.1038/gene.2008.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.88

Keywords

This article is cited by

Search

Quick links