Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Maternal and pediatric nutrition

Developmental origins of diabetes—an Indian perspective

Abstract

The developmental origins of health disease (DOHaD) hypothesis proposes that altered environmental influences (nutrition, metabolism, pollutants, stress and so on) during critical stages of fetal growth predisposes individuals to diabetes and other non-communicable disease in later life. This phenomenon is thought to reflect permanent effects (‘programming’) of unbalanced fetal development on physiological systems. Intrauterine programming may underlie the characteristic Indian ‘thin–fat’ phenotype and the current unprecedented epidemic of diabetes on the backdrop of multigenerational maternal undernutrition in the country. India has been at the forefront of the DOHaD research for over two decades. Both retrospective and prospective birth cohorts in India provide evidence for the role of impaired early-life nutrition on the later diabetes risk. These studies show that in a transitioning country such as India, maternal undernutrition (of micronutrients) and overnutrition (gestational diabetes) co-exist, and expose the offspring to disease risk through multiple pathways. Currently, the Indian scientists are embarking on complex mechanistic and intervention studies to find solutions for the diabetes susceptibility of this population. However, a few unresolved issues in this context warrant continued research and a cautious approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Neel JV . Diabetes mellitus: a ‘thrifty’ genotype rendered detrimental by ‘progress’? Am J Hum Genetics 1962; 14: 353–362.

    CAS  Google Scholar 

  2. Banerji MA, Faridi N, Atluri R, Chaiken RL, Lebovitz HE . Body composition,visceral fat, leptin, and insulin resistance in Asian Indian men. J Clin Endocrinol Metab 1999; 84: 137–144.

    CAS  PubMed  Google Scholar 

  3. Chandalia M, Abate N, Garg A, Stray-Gundersen J, Grundy SM . Relationship between generalized and upper body obesity to insulin resistance in Asian Indian men. J Clin Endocrinol Metab 1999; 84: 2329–2335.

    CAS  PubMed  Google Scholar 

  4. Yajnik CS, Fall CHD, Coyaji KJ, Hirve SS, Rao S, Barker DJP et al. Neonatal anthropometry: the thin-fat Indian baby; the Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord 2003; 27: 173–180.

    Article  CAS  Google Scholar 

  5. Barker DJP . Mothers, babies and health in later life, 2nd edition. Churchill Livingstone: Edinburgh, UK, 1998.

    Google Scholar 

  6. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS . Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced foetal growth. Diabetologia 1993; 36: 62–67.

    Article  CAS  Google Scholar 

  7. Wells JC, Pomeroy E, Walimbe SR, Popkin BM, Yajnik CS . The elevated susceptibility to diabetes in india: an evolutionary perspective. Front Public Health 2016; 4: 145.

    Article  PubMed Central  Google Scholar 

  8. Yajnik CS, Fall CH, Vaidya U, Pandit AN, Bavdekar A, Bhat DS et al. Foetal growth and glucose and insulin metabolism in four-year old Indian children. Diabet Med 1995; 12: 330–336.

    Article  CAS  Google Scholar 

  9. Bavdekar A, Yajnik CS, Fall CH, Bapat S, Pandit AN, Deshpande V et al. Insulin resistance syndrome in 8-year-old Indian children. Small at birth, Big at 8 years, or both? Diabetes 1999; 48: 2422–2429.

    Article  CAS  Google Scholar 

  10. Joshi SM, Katre PA, Kumaran K, Joglekar C, Osmond C, Bhat DS et al. Tracking of cardiovascular risk factors from childhood to young adulthood - the Pune Children's Study. Int J Cardiol 2014; 175: 176–178.

    Article  PubMed Central  Google Scholar 

  11. Yajnik CS, Katre PA, Joshi SM, Kumaran K, Bhat DS, Lubree HG et al. Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in early adulthood: the Pune Children's Study. Diabetologia 2015; 58: 1626–1636.

    Article  CAS  PubMed Central  Google Scholar 

  12. Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ et al. Relation of serial changes in childhood body-mass-index to impaired glucose tolerance in young adulthood. N Engl J Med 2004; 350: 865–875.

    Article  CAS  PubMed Central  Google Scholar 

  13. Raghupathy P, Antonisamy B, Geethanjali FS, Saperia J, Leary SD, Priya G et al. Glucose tolerance, insulin resistance and insulin secretion in young south Indian adults: relationships to parental size, neonatal size and childhood body mass index. Diabetes Res Clin Pract 2010; 87: 283–292.

    Article  CAS  PubMed Central  Google Scholar 

  14. Fall CHD, Stein CE, Kumaran K, Cox V, Osmond C, Barker DJ et al. Size at birth, maternal weight, and non-insulin-dependent diabetes (NIDDM) in South Indian adults. Diabet Med 1998; 15: 220–227.

    Article  CAS  Google Scholar 

  15. Yada KK, Gupta R, Gupta A, Gupta M . Insulin levels in low birth weight neonates. Indian J Med Res 2003; 118: 197–203.

    CAS  PubMed  Google Scholar 

  16. Rao S, Yajnik CS, Kanade A, Fall CH, Margetts BM, Jackson AA et al. Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J Nutr 2001; 131: 1217–1224.

    Article  CAS  Google Scholar 

  17. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 2008; 51: 29–38.

    Article  CAS  Google Scholar 

  18. Yajnik CS, Chandak GR, Joglekar C, Katre P, Bhat DS, Singh SN et al. Maternal homocysteine in pregnancy and offspring birthweight: epidemiological associations and Mendelian randomization analysis. Int J Epidemiol 2014; 43: 1487–1497.

    Article  PubMed Central  Google Scholar 

  19. Yajnik CS . Nutrient-mediated teratogenesis and fuel-mediated teratogenesis: two pathways of intrauterine programming of diabetes. Int J Gynaecol Obstet 2009; 104 (Suppl), S27–S31.

    Article  CAS  Google Scholar 

  20. Kumar KA, Lalitha A, Pavithra D, Padmavathi IJ, Ganeshan M, Rao KR et al. Maternal dietary folate and/or vitamin B12 restrictions alter body composition (adiposity) and lipid metabolism in Wistar rat offspring. J Nutr Biochem 2013; 24: 25–31.

    Article  CAS  Google Scholar 

  21. Kumar KA, Lalitha A, Reddy U, Chandak GR, Sengupta S, Raghunath M . Chronic maternal vitamin B12 restriction induced changes in body composition & glucose metabolism in the Wistar rat offspring are partly correctable by rehabilitation. PLoS ONE 2014; 9: e112991.

    Article  PubMed Central  Google Scholar 

  22. Freinkel N . Of pregnancy and progeny. Diabetes 1980; 29: 1023–1035.

    Article  CAS  Google Scholar 

  23. Hill JC, Krishnaveni GV, Annamma I, Leary SD, Fall CHD . Glucose tolerance in pregnancy in South India: Relationships to neonatal anthropometry. Acta Obstet Gynecol Scand 2005; 84: 159–165.

    Article  Google Scholar 

  24. Krishnaveni GV, Veena SR, Hill JC, Kehoe S, Karat SC, Fall CH . Intra-uterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. Diabetes Care 2010; 33: 402–404.

    Article  CAS  Google Scholar 

  25. Krishnaveni GV, Veena SR, Karat SC, Yajnik CS, Fall CH . Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia 2014; 57: 110–121.

    Article  CAS  Google Scholar 

  26. Kulkarni SR, Kumaran K, Rao SR, Chougule SD, Deokar TM, Bhalerao AJ et al. Maternal lipids are as important as glucose for fetal growth: findings from the Pune Maternal Nutrition Study. Diabetes Care 2013; 36: 2706–2713.

    Article  CAS  PubMed Central  Google Scholar 

  27. Krishnaveni GV, Hill JC, Veena SR, Bhat DS, Wills AK, Karat CLS et al. Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia 2009; 52: 2350–2358.

    Article  CAS  PubMed Central  Google Scholar 

  28. Yajnik CS, Lubree HG, Rege SS, Naik SS, Deshpande JA, Deshpande SS et al. Adiposity and hyperinsulinemia in Indians are present at birth. J Clin Endocrinol Metab 2002; 87: 5575–5580.

    Article  CAS  Google Scholar 

  29. Modi N, Thomas EL, Uthaya SN, Umranikar S, Bell JD, Yajnik C . Whole body magnetic resonance imaging of healthy newborn infants demonstrates increased central adiposity in Asian Indians. Pediatr Res 2009; 65: 584–587.

    Article  Google Scholar 

  30. Phillips DI, Jones A, Goulden PA . Birth weight, stress, and the metabolic syndrome in adult life. Ann N Y Acad Sci 2006; 1083: 28–36.

    Article  CAS  Google Scholar 

  31. Kajantie E . Fetal origins of stress-related adult disease. Ann N Y Acad Sci 2006; 1083: 11–27.

    Article  CAS  Google Scholar 

  32. Ward AM, Fall CH, Stein CE, Kumaran K, Veena SR, Wood PJ et al. Cortisol and the metabolic syndrome in South Asians. Clin Endocrinol (Oxf) 2003; 58: 500–505.

    Article  CAS  Google Scholar 

  33. Krishnaveni GV, Veena S, Dhube A, Karat S, Phillips D, Fall CHD . Size at birth, morning cortisol and cardiometabolic risk markers in healthy Indian children. Clin Endocrinol (Oxf) 2014; 80: 73–79.

    Article  CAS  Google Scholar 

  34. Krishnaveni GV, Veena SR, Jones A, Srinivasan K, Osmond C, Karat SC et al. Exposure to maternal gestational diabetes is associated with higher cardiovascular responses to stress in adolescent Indians. J Clin Endocrinol Metab 2015; 100: 986–993.

    Article  CAS  Google Scholar 

  35. Weinhold B . Epigenetics: the science of change. Environ Health Perspect 2006; 114: A160–A167.

    PubMed  PubMed Central  Google Scholar 

  36. Vickers MH . Early life nutrition, epigenetics and programming of later life disease. Nutrients 2014; 6: 2165–2178.

    Article  CAS  PubMed Central  Google Scholar 

  37. Perkins E, Murphy SK, Murtha AP, Schildkraut J, Jirtle RL, Demark-Wahnefried W et al. Insulin like growth factor 2/H19 methylation at birth and risk of overweight and obesity in children. J Pediatr 2012; 161: 31–39.

    Article  CAS  PubMed Central  Google Scholar 

  38. Potdar RD, Sahariah SA, Gandhi M, Kehoe SH, Brown N, Sane H et al. Improving women's diet quality preconceptionally and during gestation: effects on birth weight and prevalence of low birth weight—a randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project). Am J Clin Nutr 2014; 100: 1257–1268.

    Article  CAS  PubMed Central  Google Scholar 

  39. Barker DJ, Lampl M, Roseboom T, Winder N . Resource allocation in utero and health in later life. Placenta 2012; 33 (Supp 2), e30–e34.

    Article  Google Scholar 

  40. Jackson AA, Langley-Evans SC, McCarthy HD . Nutritional influences in early life upon obesity and body proportions. Ciba Found Symp 1996; 201: 118–129.

    CAS  PubMed  Google Scholar 

  41. Krishnaveni GV, Veena SR, Srinivasan K, Osmond C, Fall CH . Linear growth and fat and lean tissue gain during childhood: associations with cardiometabolic and cognitive outcomes in adolescent Indian children. PLoS ONE 2015; 10: e0143231.

    Article  PubMed Central  Google Scholar 

  42. Bayo J, Dalvi MP, Martinez ED . Successful strategies in the discovery of small-molecule epigenetic modulators with anticancer potential. Future Med Chem 2015; 7: 2243–2261.

    Article  CAS  Google Scholar 

  43. Joss-Moore LA, Lane RH . Epigenetics and the developmental origins of disease: the key to unlocking the door of personalized medicine. Epigenomics 2012; 4: 471–473.

    Article  CAS  Google Scholar 

  44. Richardson SS, Daniels CR, Gillman MW, Golden J, Kukla R, Kuzawa C et al. Society: don’t blame the mothers. Nature 2014; 512: 131–132.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G V Krishnaveni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaveni, G., Yajnik, C. Developmental origins of diabetes—an Indian perspective. Eur J Clin Nutr 71, 865–869 (2017). https://doi.org/10.1038/ejcn.2017.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2017.87

This article is cited by

Search

Quick links