Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Body Composition, Energy Expenditure and Physical Activity

Different displacement of bioimpedance vector due to Ag/AgCl electrode effect

Abstract

Background/Objectives:

Bioelectrical impedance vector analysis (BIVA) is increasingly used in clinical research to assess soft tissue hydration. It is known that physical characteristics of electrodes, such as low intrinsic impedance, low electrode/skin contact impedance and type of gel, affect the reliability of noninvasive bioimpedance assessments. The aim of this study was to determine the effect of intrinsic impedance of electrode on the bioimpedance vector displacement in RXc graph.

Subjects/Methods:

The intrinsic impedance is measured in nine pregelled disposable Ag/AgCl electrodes usually used for bioimpedance measures. The BIVA method is performed on 35 healthy volunteers using a 50 kHz phase-sensitive bioimpedance analyzer (BIA 101 Anniversary) with the lowest intrinsic impedance electrode and highest. The individual bioimpedance vector is plotted on the bivariate normal interval of reference population. The differences in the mean bioimpedance vectors obtained with each electrode are plotted, with their 95% confidence ellipses, on the dRXc graph. The paired one-sample Hotelling's T2-test is used to compare the differences of the mean bioimpedance vectors.

Results:

We found large variability in intrinsic resistance (11–665 Ω) and reactance (0.25–2.5 Ω) values of the electrodes analyzed and significant displacement (P<0.05) of bioimpedance vector positions in healthy adults according to the paired one-sample Hotelling's T2-test.

Conclusions:

A robust study of all physical characteristics of commercial Ag/AgCl electrodes is necessary to reach consensus on pregelled Ag/AgCl electrodes valid for bioimpedance measurement. This information will enable BIVA users to avoid systemic errors when performing BIVA assessments, specifically when these measurements are used for clinical interpretations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lukaski HC . Evolution of bioimpedance: journey from assessment of physiological function through body fat to clinical medicine. Eur J Clin Nutr 2013; 67: S2–S9.

    Article  Google Scholar 

  2. National Institutes of Health.. Bioelectrical impedance analysis in body composition measurement. NIH Technical Assessment Statement 1994. Am J Clin Nutr 1996; 64 (Suppl), 524S–532S.

    Google Scholar 

  3. Ellis KJ, Bell SJ, Chertow GM, Chumlea WC, Know TA, Kotler DP et al. Bioelectrical impedance methods in clinical research: a follow up to the NIH technology assessment conference. Nutrition 1999; 15: 874–880.

    Article  CAS  Google Scholar 

  4. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr 2004; 23: 1430–1453.

    Article  Google Scholar 

  5. Schwan HP . Alternating current electrode polarisation. Biophysik 1966; 3: 181–201.

    Article  CAS  Google Scholar 

  6. Janz GJ, Ives DJG . Silver-silver chloride electrodes. Ann NY Acad Sci 1968; 148: 210–221.

    Article  CAS  Google Scholar 

  7. Crenner F, Angel F, Ringwald C . Ag/AgC1 electrode assembly for thin smooth muscle electromyography. Med Biol Eng Comput 1989; 27: 346–356.

    Article  CAS  Google Scholar 

  8. McAdams ET, Henry P, Anderson JM, Jossinet J . Optimal electrolytic chloriding of silver ink electrodes for use in electrical impedance tomography. Clin Phys Physiol Mes 1992; 13 (Suppl 1), 19–23.

    Article  Google Scholar 

  9. McAdams ET, McLaughlin J, Brown BH, McArdle F . The NIBEC E.I.T. electrode harness. In: Holder D (ed), Clinical and Physical Applications of Electrical Impedance Tomography. UCL Press: London, UK, 1993, pp 85–92.

    Google Scholar 

  10. McAdams ET, Lackermeier A, McLaughlin JA, Macken D . The linear and non-linear electrical properties of the electrode-electrolyte interface. Biosens Bioelectron 1995; 10: 67–74.

    Article  CAS  Google Scholar 

  11. Webster JG . Medical Instrumentation, Application and Design. Willey: New York, NY, USA, 1998, pp 196–208.

    Google Scholar 

  12. Shiwei X, Dai X, Meng X, Canhua X, Chaoshuang Ch, Mengxing T et al. Performance evaluation of five types of Ag/AgCl bio-electrodes for cerebral electrical impedance tomography. Ann Biomed Eng 2011; 39: 2059–2067.

    Article  Google Scholar 

  13. Bolton MP, Ward LC, Khan A, Campbell I, Nightingale P, Dewit O, Elia M . Sources of error in bioimpedance spectroscopy. Physiol Meas 1998; 19: 235–246.

    Article  CAS  Google Scholar 

  14. Bogónez-Franco P, Nescolarde L, Bragós R, Rosell-Ferrer J, Yandiola I . Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch. Physiol Meas 2009; 30: 573–587.

    Article  Google Scholar 

  15. Piccoli A, Rossi B, Pillon L, Bucciante G . A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int 1994; 46: 534–539.

    Article  CAS  Google Scholar 

  16. Piccoli A, for the Italian HD-BIA Study Group. Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. Kidney Int 1998; 53: 1036–1043.

    Article  CAS  Google Scholar 

  17. Pillon L, Piccoli A, Lowrie EG . Vector length as a proxy for the adequacy of ultrafiltration in hemodialysis. Kidney Int 2004; 66: 1266–1271.

    Article  Google Scholar 

  18. Nescolarde L, Piccoli A, Román A, Núñez A, Morales R, Tamayo J et al. Bioelectrical impedance vector analysis in haemodialysis patients. Relation between oedema and mortality. Physiol Meas 2004; 25: 1271–1280.

    Article  CAS  Google Scholar 

  19. Piccoli A,, for the Italian CAPD-BIA study group. Bioelectrical impadance vector distribution in pritoneal dialysis patients with different hydration state. Kidney Int 2004; 65: 1050–1063.

    Article  Google Scholar 

  20. Nescolarde L, Doñate T, Piccoli A, Rosell-Ferrer J . Comparison of segmental with whole-body impedance measurements in peritoneal dialysis patients. Med Eng Phys 2008; 30: 817–824.

    Article  Google Scholar 

  21. Piccoli A, Brunani A, Savia G . Discriminating between body fat and fluid changes in the obese adult using bioimpedance vector analysis. Int J Obesity 1998; 22: 97–104.

    Article  CAS  Google Scholar 

  22. Gastelurrutia P, Nescolarde L, Rosell-Ferrer J, Domingo M, Ribas N, Bayes-Genis A . Bioelectrical impedance vector analysis (BIVA) in stable and non stable heart failure patients: a pilot study. Int J Cardiol 2010; 146: 262–264.

    Article  Google Scholar 

  23. Piccoli A, Codognotto M, Di Pascoli L, Boffo G, Caregaro L . Body mass index and agreement between bioimpedance and anthropometry estimates of body compartments in anorexia nervosa. J Parenter Enteral Nutr 2005; 29: 148–156.

    Article  Google Scholar 

  24. De Palo T, Messina G, Edefonti A, Perfumo F . Normal values of the bioelectrical impedance vector in childhood and puberty. Nutrition 2000; 16: 417–424.

    Article  CAS  Google Scholar 

  25. Piccoli A, Fanos V, Peruzzi L, Schena S, Pizzini C, Borgione S et al. Reference values of the bioelectrical impedance vector in neonates in the first week after birth. Nutrition 2002; 18: 383–387.

    Article  Google Scholar 

  26. Margutti AV, Monteiro JP, Camelo JS . Reference distribution of the bioelectrical impedance vector in healthy term newborns. Br J Nutr 2010; 104: 1508–1513.

    Article  CAS  Google Scholar 

  27. L'Abée C, Poorts-Borger PH, EHGN Gorter, Piccoli A, Stolk RP, Sauer PJJ . The bioelectrical impedance vector migration in healthy infants. Clin Nutr 2010; 29: 222–226.

    Article  Google Scholar 

  28. Nescolarde L, Núñez A, Bogónez-Franco P, Lara A, Vaillant G, Morales R et al. Reference values of the bioimpedance vector components in a Caribbean population. e-SPEN J 2013; 8: e141–e144.

    Article  Google Scholar 

  29. Ward LD, Heitman BL, Craig P, Stroud D, Azinge EC, Jebb S . Association between ethnicity, body mass index, and bioelectrical impedance. Ann NY Acad Sci 2001; 258: 199–202.

    Google Scholar 

  30. Piccoli A, Pillon L, Dumler F . Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores. Nutrition 2002; 18: 156–170.

    Google Scholar 

  31. Bosy-Westphal A, Danielzik S, Dörhöfer RP, Piccoli A, Müller MJ . Patterns of bioelectrical impedance vector distribution by body mass index and age: implications for body-composition analysis. Am J Clin Nutr 2005; 82: 60–68.

    Article  CAS  Google Scholar 

  32. Piccoli A, Nigrelli S, Caberlotto A, Bottazzo S, Rossi B, Pillon L, Maggiore Q . Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. Am J Clin Nutr 1995; 61: 269–270.

    Article  CAS  Google Scholar 

  33. Norman K, Syobaus N, Pirlich M, Bosy-Westphal A . Bioelectrical phase angle and impedance vector analysis—clinical relevance and applicability of impedance parameters. Clin Nutr 2012; 31: 854–861.

    Article  Google Scholar 

  34. Camina Martín MA, De Mateo Silleras B, Nescolarde Selva L, Barrera Ortega S, Domínguez Rodríguez L, Redondo del Río MP . Bioimpedance vector analysis and conventional bioimpedance to assess body composition in elderly adults with dementia. Nutrition 2015; 31: 155–159.

    Article  Google Scholar 

  35. Toso S, Piccoli A, Gusella M, Menon D, Bononi A, Crepaldi G . Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis. Nutrition 2000; 16: 120–124.

    Article  CAS  Google Scholar 

  36. Lukaski HC, Piccoli A . Bioelectrical impedance vector analysis for assessment of hydration in physiological states and clinical conditions In: Preedy V (ed), Handbook of Anthropometry. Springer: London, UK, 2012, pp 287–315.

    Book  Google Scholar 

  37. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA . Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol 1986; 60: 1327–1332.

    Article  CAS  Google Scholar 

  38. Piccoli A, Pastori G . BIVA Software. University of Padova: Padova, Italy, 2002.

  39. Hotelling H . The generalization of Student's ratio. Ann Math Stat 1931; 2: 360–378.

    Article  Google Scholar 

  40. Camina Martín MA, de Mateo Silleras B, Redondo del Río MP . Body composition analysis in older adults with dementia. Anthropometry and bioelectrical impedance analysis: a critical review. Eur J Clin Nutr 2014; 68: 1228–1233.

    Article  Google Scholar 

  41. Ward LC, Dylke E, Czerniec S, Isenring E, Kilbreath SL . Confirmation of the reference impedance ratios used for assessment of breast cancer-related lymphedema by bioelectrical impedance spectroscopy. Lymphat Res Biol 2011; 9: 47–51.

    Article  CAS  Google Scholar 

  42. Boone KG, Holder DS . Effect of skin impedance on image quality and variability in electrical impedance tomography: a model study. Med Biol Eng Comput 1996; 34: 351–354.

    Article  CAS  Google Scholar 

  43. Da Silva TK, Berbigier MC, Rubin Bde A, Moraes RB, Corrêa Souza G, Schweigert Perry ID . Phase angle as a prognostic marker in patients with critical illness. Nutr Clin Pract 2015; 30: 261–265.

    Article  Google Scholar 

  44. Beberashvili I, Azar A, Sinuani I, Shapiro G, Feldman L, Stav K et al. Bioimpedance phase angle predicts muscle function, quality of life and clinical outcome in maintenance hemodialysis patients. Eur J Clin Nutr 2014; 68: 683–689.

    Article  CAS  Google Scholar 

  45. Chumlea WC, Guo SS, Siervogel RM . Phase angle spectrum analysis and body water. Appl Radiat Isot 1998; 49: 489–491.

    Article  CAS  Google Scholar 

  46. Norman K, Stobäus N, Zocher D, Bosy-Westphal A, Szramek A, Scheufele R et al. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am J Clin Nutr 2010; 92: 612–619.

    Article  CAS  Google Scholar 

  47. Böhm A, Heitmann BL . The use of bioelectrical impedance analysis for body composition in epidemiological studies. Eur J Clin Nutr 2013; 67: S79–S85.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all volunteers for their collaboration in this work without which it would not have been possible. We also thank Dr Eng Paco Bogónez-Franco for all recommendations and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Nescolarde.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nescolarde, L., Lukaski, H., De Lorenzo, A. et al. Different displacement of bioimpedance vector due to Ag/AgCl electrode effect. Eur J Clin Nutr 70, 1401–1407 (2016). https://doi.org/10.1038/ejcn.2016.121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.121

This article is cited by

Search

Quick links