Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Clinical workout for the early detection of cognitive decline and dementia

Abstract

Aging is the major risk factor for the development of human neurodegenerative maladies such as Alzheimer’s, Huntington’s and Parkinson’s diseases (PDs) and prion disorders, all of which stem from toxic protein aggregation. All of these diseases are correlated with cognitive decline. Cognitive Decline is a dynamic state from normal cognition of aging to dementia. According to the original criteria for Alzheimer’s Disease (AD) (1984), a clinical diagnosis was possible only when someone was already demented. The prevalence rates of Cognitive Decline (mild cognitive impairment plus dementia) are very high now and will be higher in future because of the increasing survival time of people. Many neurological and psychiatric diseases are correlated with cognitive decline. Diagnosis of cognitive decline is mostly clinical (clinical criteria), but there are multiple biomarkers that could help us mostly in research programs such as short or long, paper and pencil or computerized neuropsychological batteries for cognition, activities of daily living and behavior, electroencephalograph, event-related potentials, and imaging—structural magnetic resonance imaging (MRI) and functional (fMRI, Pittsburgh bound positron emission tomography, FDG-PET, single photon emission computerized tomography and imaging of tau pathology)—cerebrospinal fluid proteins (Abeta, tau and phospho-tau in AD and α-synuclein (αSyn) for PD). Blood biomarkers need more studies to confirm their usefulness. Genetic markers are also studied but until now are not used in clinical praxis. Finally, in everyday clinical praxis and in research workout for early detection of cognitive decline, the combination of biomarkers is useful.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sorbi S, Hort J, Erkinjuntti T, Fladby T, Gainotti G, Gurvit H et al. EFNS Scientist Panel on Dementia and Cognitive Neurology. EFNS-ENS Guidelines on the diagnosis and management of disorders associated with dementia. Eur J Neurol 2012; 19: 1159–1179.

    Article  CAS  PubMed  Google Scholar 

  2. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7: 280–292.

    Article  PubMed  Google Scholar 

  3. Tsolaki M, Tsolaki A, Kakoudaki T, Pattakou V . Prevalence of mild cognitive impairment in individuals aged over 65 in a rural area in North Greece. Adv Pediatr Infect Dis 2014; 3: 11–19.

    Google Scholar 

  4. Brodaty H, Heffernan M, Kochan NA, Draper B, Trollor JN, Reppermund S et al. Mild cognitive impairment in a community sample: the Sydney Memory and Ageing Study. Alzheimers Dement 2013; 9: 310–317.

    Article  PubMed  Google Scholar 

  5. Alzheimer Disease International.The Global Impact of Dementia 2013-2050.

  6. Henry JD, Phillips LH, von Hippel C . A meta-analytic review of theory of mind difficulties in behavioral-variant frontotemporal dementia. Neuropsychologia 2014; 9: 53–62.

    Article  Google Scholar 

  7. Broeders M, de Bie RM, Velseboer DC, Speelman JD, Muslimovic D, Schmand B . Evolution of mild cognitive impairment in Parkinson disease. Neurology 2013; 81: 346–352.

    Article  CAS  PubMed  Google Scholar 

  8. McKeith IG, Dickson DW, Lowe J, Emre M, O'Brien JT, Feldman H et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005; 65: 1863–1872.

    Article  CAS  PubMed  Google Scholar 

  9. Rohan Z, Matej R . Current concepts in the classification and diagnosis of frontotemporal lobar degenerations: a practical approach. Arch Pathol Lab Med 2014; 138: 132–138.

    Article  CAS  PubMed  Google Scholar 

  10. Radja GK, Cavanna AE . Treatment of VGKC complex antibody-associated limbic encephalitis: a systematic review. J Neuropsychiatry Clin Neurosci 2013 Fall 25: 264–271.

    Article  PubMed  Google Scholar 

  11. Scuffham TM, Macmillan JC . Huntington Disease: Who Seeks Presymptomatic Genetic Testing, Why and What are the Outcomes? J Genet Couns 2014; 23: 754–761.

    Article  PubMed  Google Scholar 

  12. Poggiolini I, Saverioni D, Parchi P . Prion Protein Misfolding, Strains, and Neurotoxicity: An Update from Studies on Mammalian Prions. Int J Cell Biol 2013; 2013: 910314.

    Article  PubMed  Google Scholar 

  13. Mortamais M, Artero S, Ritchie K . Cerebral white matter hyperintensities in the prediction of cognitive decline and incident dementia. Int Rev Psychiatry 2013; 25: 686–698.

    Article  Google Scholar 

  14. Nijdam MJ, Gersons BP, Olff M . The role of major depression in neurocognitive functioning in patients with posttraumatic stress disorder. Eur J Psychotraumatol 2013; 2: 4.

    Google Scholar 

  15. Kremen WS, Jak AJ, Panizzon MS, Spoon KM, Franz CE, Thompson WK et al. Early identification and heritability of mild cognitive impairment. Int J Epidemiol 2013; 43: 600–610.

    Article  PubMed  Google Scholar 

  16. Rentz DM, Parra Rodriguez MA, Amariglio R, Stern Y, Sperling R, Ferris S . Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer's disease: a selective review. Alzheimers Res Ther 2013; 5: 58.

    Article  PubMed  Google Scholar 

  17. Paajanen T, Hänninen T, Tunnard C, Hallikainen M, Mecocci P, Sobow T et al. CERAD Neuropsychological Compound Scores are Accurate in Detecting Prodromal Alzheimer's Disease: a prospective AddNeuroMed Study. J Alzheimers Dis 2013; 39: 679–690.

    Article  Google Scholar 

  18. Marshall GA, Amariglio RE, Sperling RA, Rentz DM . Activities of daily living: where do they fit in the diagnosis of Alzheimer's disease? Neurodegener Dis Manag 2012; 2: 483–491.

    Article  PubMed  Google Scholar 

  19. Kounti F, Tsolaki M, Kiosseoglou G . Functional cognitive assessment scale (FUCAS): a new scale to assess executive cognitive function in daily life activities in patients with dementia and mild cognitive impairment. Hum Psychopharmacol 2006; 21: 305–311.

    Article  PubMed  Google Scholar 

  20. Van der Mussele S, Le Bastard N, Vermeiren Y, Saerens J, Somers N, Mariën P et al. Behavioral symptoms in mild cognitive impairment as compared with Alzheimer's disease and healthy older adults. Int J Geriatr Psychiatry 2013; 28: 265–275.

    Article  PubMed  Google Scholar 

  21. Marshall GA, Donovan NJ, Lorius N, Gidicsin CM, Maye J, Pepin LC et al. Apathy is associated with increased amyloid burden in mild cognitive impairment. J Neuropsychiatry Clin Neurosci 2013 Fall 25: 302–307.

    Article  PubMed  Google Scholar 

  22. Koppel J, Sunday S, Buthorn J, Goldberg T, Davies P, Greenwald B . Alzheimer’s Disease Neuroimaging Initiative. Elevated CSF Tau is associated with psychosis in Alzheimer's disease. Am J Psychiatry 2013; 170: 1212–1213.

    Article  PubMed  Google Scholar 

  23. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6: 734–746.

    Article  Google Scholar 

  24. Dubois B, Epelbaum S, Santos A, Di Stefano F, Julian A, Michon A et al. Alzheimer disease: from biomarkers to diagnosis. Rev Neurol (Paris) 2013; 169: 744–751.

    Article  CAS  Google Scholar 

  25. Richard E, Schmand BA, Eikelenboom P, Van Gool WA . Alzheimer's Disease Neuroimaging Initiative. MRI and cerebrospinal fluid biomarkers for predicting progression to Alzheimer's disease in patients with mild cognitive impairment: a diagnostic accuracy study. BMJ Open 2013; 3: e002541.

    Article  PubMed  Google Scholar 

  26. Nettiksimmons J, Decarli C, Landau S, Beckett L . Alzheimer's Disease Neuroimaging Initiative. Biological heterogeneity in ADNI amnestic mild cognitive impairment. Alzheimers Dement 2014; 10: 511–521.e1.

    Article  PubMed  Google Scholar 

  27. Tsolaki A, Kazis D, Kompatsiaris I, Kosmidou V, Tsolaki M . Electroencephalogram and Alzheimer’s Disease: clinical and Research Approaches. (Review Article) International Journal of Alzheimer's Disease 2014; 2014: 349249.

    Article  PubMed  Google Scholar 

  28. Moretti DV, Paternicò D, Binetti G, Zanetti O, Frisoni GB . Analysis of grey matter in thalamus and basal ganglia based on EEG α3/α2 frequency ratio reveals specific changes in subjects with mild cognitive impairment. ASN Neuro 2012; 4: e00103.

    Article  PubMed  Google Scholar 

  29. Papaliagkas V, Kimiskidis V, Tsolaki M, Anogianakis G . Usefulness of event-related potentials in the assessment of mild cognitive impairment. BMC Neurosci 2008; 9: 107.

    Article  PubMed  Google Scholar 

  30. Papaliagkas VT, Anogianakis G, Tsolaki MN, Koliakos G, Kimiskidis VK . Progression of mild cognitive impairment to Alzheimer’s disease: improved diagnostic value of the combined use of N200 latency and beta-amyloid(1-42) levels. Dement Geriatr Cogn Disord 2009; 28: 30–35.

    Article  CAS  PubMed  Google Scholar 

  31. Papaliagkas VT, Anogianakis G, Tsolaki MN, Koliakos G, Kimiskidis VK . Combination of P300 and CSF β-amyloid(1-42) assays may provide a potential tool in the early diagnosis of Alzheimer’s disease. Curr Alzheimer Res 2010; 7: 295–299.

    Article  CAS  PubMed  Google Scholar 

  32. Frisoni GB, Bocchetta M, Chételat G, Rabinovici GD, de Leon MJ, Kaye J et al. ISTAART's NeuroImaging Professional Interest Area. Imaging markers for Alzheimer disease: which vs how. Neurology 2013; 81: 487–500.

    Article  CAS  PubMed  Google Scholar 

  33. Quiroz YT, Stern CE, Reiman EM, Brickhouse M, Ruiz A, Sperling RA et al. Cortical atrophy in presymptomatic Alzheimer's disease presenilin 1 mutation carriers. J Neurol Neurosurg Psychiatry 2013; 84: 556–561.

    Article  PubMed  Google Scholar 

  34. Donovan NJ, Wadsworth LP, Lorius N, Locascio JJ, Rentz DM, Johnson KA et al. Alzheimer Disease Neuroimaging Initiative. Regional Cortical Thinning Predicts Worsening Apathy and Hallucinations Across the Alzheimer Disease Spectrum. Am J Geriatr Psychiatry 2013 24.

  35. Minati L, Chan D, Mastropasqua C, Serra L, Spanò B, Marra C et al. Widespread Alterations in Functional Brain Network Architecture in Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2013; 40: 213–220.

    Article  Google Scholar 

  36. Amariglio RE, Becker JA, Carmasin J, Wadsworth LP, Lorius N, Sullivan C et al. Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia 2012; 50: 2880–2886.

    Article  PubMed  Google Scholar 

  37. Chhatwal JP, Schultz AP, Johnson K, Benzinger TL, Jack Jr C, Ances BM et al. Impaired default network functional connectivity in autosomal dominant Alzheimer disease. Neurology 2013; 81: 736–744.

    Article  PubMed  Google Scholar 

  38. Zhou Y, Yu F, Duong TQ . White matter lesion load is associated with resting state functional MRI activity and amyloid pet but not FDG in mild cognitive impairment and early alzheimer's disease patients. J Magn Reson Imaging 2013; e-pub ahead of print 31 December 2013; doi:10.1002/jmri.24550.

    Article  PubMed  Google Scholar 

  39. Ewers M, Brendel M, Rizk-Jackson A, Rominger A, Bartenstein P, Schuff N et al. Alzheimer's Disease Neuroimaging Initiative (ADNI). Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects. Neuroimage Clin 2013; 4: 45–52.

    Article  PubMed  Google Scholar 

  40. Laforce Jr R, Rabinovici GD . Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications. Alzheimers Res Ther 2011; 3: 31.

    Article  PubMed  Google Scholar 

  41. Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M et al. Novel 18 F-Labeled Arylquinoline Derivatives for Noninvasive Imaging of Tau Pathology in Alzheimer Disease. J Nucl Med 2013; 54: 1420–1427.

    Article  CAS  Google Scholar 

  42. Moghekar A, Li S, Lu Y, Li M, Wang MC, Albert M, O'Brien R . BIOCARD Research Team. CSF biomarker changes precede symptom onset of mild cognitive impairment. Neurology 2013; 81: 1753–1758.

    Article  CAS  PubMed  Google Scholar 

  43. Visser PJ, Verhey F, Knol DL, Scheltens P, Wahlund LO, Freund-Levi Y et al. Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 2009; 8: 619–627.

    Article  PubMed  Google Scholar 

  44. Mollenhauer B . Quantification of α-synuclein in cerebrospinal fluid: how ideal is this biomarker for Parkinson's disease? Parkinsonism Relat Disord 2014; Suppl 1: S76–S79.

    Article  Google Scholar 

  45. Hye A, Riddoch-Contreras J, Baird AL, Ashton NJ, Bazenet C, Leung R et al. Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement 2014; e-pub ahead of print 3 July 2014; doi:10.1016/j.jalz.2014.05.1749.

    Article  Google Scholar 

  46. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 2013; 45: 1452–1458.

    Article  CAS  PubMed  Google Scholar 

  47. Pilotto A, Padovani A, Borroni B . Clinical, Biological, and Imaging Features of Monogenic Alzheimer's Disease. Biomed Res Int 2013; 2013: 689591.

    Article  PubMed  Google Scholar 

  48. Nho K. et al. Protective Variant for Hippocampal Atrophy Identified by Whole Exome Sequencing. Under publication, Personal communication.

  49. Koepsell TD, Gill DP, Chen B . Stability of clinical etiologic diagnosis in dementia and mild cognitive impairment: results from a multicenter longitudinal database. Am J Alzheimers Dis Other Demen 2013; 28: 750–758.

    Article  PubMed  Google Scholar 

  50. Salmon DP, Ferris SH, Thomas RG, Sano M, Cummings JL, Sperling RA et al. Age and apolipoprotein E genotype influence rate of cognitive decline in nondemented elderly. Neuropsychology 2013; 27: 391–401.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Tsolaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsolaki, M. Clinical workout for the early detection of cognitive decline and dementia. Eur J Clin Nutr 68, 1186–1191 (2014). https://doi.org/10.1038/ejcn.2014.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2014.189

This article is cited by

Search

Quick links