Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Interleukin-13 interferes with activation-induced t-cell apoptosis by repressing p53 expression

Abstract

The etiology and the underlying mechanism of CD4+ T-cell polarization are unclear. This study sought to investigate the mechanism by which interleukin (IL)-13 prevents the activation-induced apoptosis of CD4+ T cells. Here we report that CD4+ T cells expressed IL-13 receptor α2 in the intestine of sensitized mice. IL-13 suppressed both the activation-induced apoptosis of CD4+ T cells and the expression of p53 and FasL. Exposure to recombinant IL-13 inhibited activation-induced cell death (AICD) along with the expression of p53, caspase 3, and tumor necrosis factor-α in CD4+ T cells. Administration of an anti-IL-13 antibody enhanced the effect of specific immunotherapy on allergic inflammation in the mouse intestine, enforced the expression of p53 in intestinal CD4+ T cells, and enhanced the frequency of CD4+ T-cell apoptosis upon challenge with specific antigens. In summary, blocking IL-13 enhances the therapeutic effect of antigen-specific immunotherapy by regulating apoptosis and thereby enforcing AICD in CD4+ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lloyd CM, Saglani. T cells in asthma: influences of genetics, environment, and T-cell plasticity. J Allergy Clin Immunol 2013;131:1267–1274.

    Article  CAS  Google Scholar 

  2. Niebuhr M, Werfel T, Innate immunity, allergy and atopic dermatitis. Curr Opin Allergy Clin Immunol 2010;10:463–468.

    Article  CAS  Google Scholar 

  3. Neuman MG . Immune dysfunction in inflammatory bowel disease. Transl Res 2007; 149: 173–186.

    Article  CAS  Google Scholar 

  4. Hirahara K, Poholek A, Vahedi G, Laurence A, Kanno Y, Milner JD et al. Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease. J Allergy Clin Immunol 2013; 131: 1276–1287.

    Article  CAS  Google Scholar 

  5. Krammer PH, Arnold R, Lavrik IN . Life and death in peripheral T cells. Nat Rev Immunol 2007; 7: 532–542.

    Article  CAS  Google Scholar 

  6. Akdis M, Trautmann A, Klunker S, Blaser K, Akdis CA . Cytokine network and dysregulated apoptosis in atopic dermatitis. Acta Odontol Scand 2001; 59: 178–182.

    Article  CAS  Google Scholar 

  7. Wade M, Li YC, Wahl GM . MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 2013; 13: 83–96.

    Article  CAS  Google Scholar 

  8. Shajib M, Wang H, Kim JJ, Sunjic I, Ghia JE, Denou E et al. Interleukin 13 and serotonin: linking the immune and endocrine systems in murine models of intestinal inflammation. PLoS One 2013; 8: e72774.

    Article  CAS  Google Scholar 

  9. Mannon P, Reinisch W . Interleukin 13 and its role in gut defence and inflammation. Gut 2012; 61: 1765–1773.

    Article  CAS  Google Scholar 

  10. Leonard SA, Martos G, Wang W, Nowak-Wegrzyn A, Berin MC . Oral immunotherapy induces local protective mechanisms in the gastrointestinal mucosa. J Allergy Clin Immunol 2012; 129: 1579–1587.

    Article  CAS  Google Scholar 

  11. Rahman I, Kinnula VL, Gorbunova V, Yao H . SIRT1 as a therapeutic target in inflammaging of the pulmonary disease. Prev Med 2012; 54: S20–S28.

    Article  CAS  Google Scholar 

  12. Xiong Y, Yu Y, Montani J-P, Yang Z, Ming X-F . Arginase-II induces vascular smooth muscle cell senescence and apoptosis through p66Shc and p53 independently of its I-arginine ureahydrolase activity: implications for atherosclerotic plaque vulnerability. J Am Heart Assoc 2013; 2: e000096.

    Article  Google Scholar 

  13. Suzuki K, Murphy SH, Xia Y, Yokota M, Nakagomi D, Liu F et al. Tumor suppressor p53 functions as a negative regulator in IgE-mediated mast cell activation. PLoS One 2011; 6: e25412.

    Article  CAS  Google Scholar 

  14. Lettau M, Paulsen M, Schmidt H, Janssen O . Insights into the molecular regulation of FasL (CD178) biology. Eur J Cell Biol 2011; 90: 456–466.

    Article  CAS  Google Scholar 

  15. Qiao L, Wong BCY . Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 2009; 12: 55–64.

    Article  CAS  Google Scholar 

  16. Chiang JH, Yang JS, Lu CC, Hour MJ, Chang SJ, Lee TH et al. Newly synthesized quinazolinone HMJ-38 suppresses angiogenetic responses and triggers human umbilical vein endothelial cell apoptosis through p53-modulated Fas/death receptor signaling. Toxicol Appl Pharmacol 2013; 269: 150–162.

    Article  CAS  Google Scholar 

  17. Ooi AT, Ram S, Kuo A, Gilbert JL, Yan W, Pellegrini M et al. Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation. Am J Transl Res 2012; 4: 219–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Oh CK, Geba GP, Molfino N . Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. Eur Respir Rev 2010; 19: 46–54.

    Article  CAS  Google Scholar 

  19. Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A . Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev 2006; 17: 173–188.

    Article  CAS  Google Scholar 

  20. Shimoda K, van Deursent J, Sangster MY, Sarawar SR, Carson RT, Tripp RA et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted State6 gene. Nature 1996; 380: 630–633.

    Article  CAS  Google Scholar 

  21. Niranjan R, Rayapudi M, Mishra A, Dutt P, Dynda S, Mishra A . Pathogenesis of allergen-induced eosinophilic esophagitis is independent of interleukin (IL)-13. Immunol Cell Biol 2013; 91: 408–415.

    Article  CAS  Google Scholar 

  22. Wu Z, Pearson A, Oliveira D . Characterization of cis-regulatory elements conferring mercury-induced interleukin-4 gene expression in rat mast cells: a role for signal transducer and activator of transcription 6 and TATA box binding sites. Immunology 2009; 127: 530–538.

    Article  CAS  Google Scholar 

  23. Li BH, Xu SB, Li F, Zou XG, Saimaiti A, Simayi D et al. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo. Cell Signal 2012; 24: 718–725.

    Article  CAS  Google Scholar 

  24. Li BH, Yang XZ, Li PD, Yuan Q, Liu XH, Yuan J et al. IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells. Biochem Biophys Res Commun 2008; 369: 554–560.

    Article  CAS  Google Scholar 

  25. Kasaian MT, Miller DK . IL-13 as a therapeutic target for respiratory disease. Biochem Pharmacol 2008; 76: 147–155.

    Article  CAS  Google Scholar 

  26. Punnonen J, Aversa G, Cocks BG, McKenzie AN, Menon S, Zurawski G et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci U S A 1993; 90: 3730–3734.

    Article  CAS  Google Scholar 

  27. Horie S, Okubo Y, Hossain M, Sato E, Nomura H, Koyama S et al. Interleukin-13 but not interleukin-4 prolongs eosinophil survival and induces eosinophil chemotaxis. Intern Med 1997; 36: 179–185.

    Article  CAS  Google Scholar 

  28. Heller F, Fromm A, Gitter AH, Mankertz J, Schulzke JD . Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol 2008; 1: S58–S61.

    Article  CAS  Google Scholar 

  29. Singhera GK, MacRedmond R, Dorscheid DR . Interleukin-9 and -13 inhibit spontaneous and corticosteroid induced apoptosis of normal airway epithelial cells. Exp Lung Res 2008; 34: 579–598.

    Article  CAS  Google Scholar 

  30. Xiao Z, Shan J, Li C, Luo L, Lu J, Li S et al. Mechanisms of cyclosporine-induced renal cell apoptosis: a systematic review. Am J Nephrol 2013; 37: 30–40.

    Article  CAS  Google Scholar 

  31. Urbano PC, Soccol VT, Azevedo VF . Apoptosis and the FLIP and NF-kappa B proteins as pharmacodynamic criteria for biosimilar TNF-alpha antagonists. Biologics 2014; 8: 211–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Holla S, Ghorpade DS, Singh V, Bansal K, Balaji KN . Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-alpha-induced apoptosis. Mol Cancer 2014; 13: 210.

    Article  Google Scholar 

  33. Manna SK, Aggarwal BB . IL-13 suppresses TNF-induced activation of nuclear factor-kappa B, activation protein-1, and apoptosis. J Immunol 1998; 161: 2863–2872.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Natural Science Foundation of China (81370497, 81373176 and 31400856), the Research Project in the 12th five-year-plan of Ministry of Science and Technology (2011BAZ03384), the Innovation of Science and Technology Commission of Shenzhen Municipality (JCYJ20140418095735538 and JCYJ20140411150916749), and the Natural Science Foundation of SZU (No. 000004).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Xu, LZ., Liu, ZQ. et al. Interleukin-13 interferes with activation-induced t-cell apoptosis by repressing p53 expression. Cell Mol Immunol 13, 669–677 (2016). https://doi.org/10.1038/cmi.2015.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.50

Keywords

This article is cited by

Search

Quick links