Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Vertically integrated translational studies of PDX1 as a therapeutic target for pancreatic cancer via a novel bifunctional RNAi platform

Abstract

RNA interference (RNAi) represents a powerful, new tool for scientific investigation as well as a promising new form of targeted gene therapy, with applications currently in clinical trials. Bifunctional short hairpin RNA (shRNA) are synthetic RNAi molecules, engineered to utilize multiple endogenous RNAi pathways to specifically silence target genes. Pancreatic and duodenal homeobox 1 (PDX1) is a key regulator of pancreatic development, β-cell differentiation, normal β-cell function and pancreatic cancer. Our aim is to review the process of identifying PDX1 as a specific, potential RNAi target in pancreatic cancer, as well as the underlying mechanisms and various forms of RNAi, with subsequent testing and development of PDX1-targeted bifunctional shRNA therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Howlader NNA, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL (eds) SEER Cancer Statistics Review 1975-2010. National Cancer Institute: Bethesda, MD, 2013.

    Google Scholar 

  2. Cowgill SM, Muscarella P . The genetics of pancreatic cancer. Am J Surg 2003; 186: 279–286.

    Article  CAS  PubMed  Google Scholar 

  3. Hong SM, Park JY, Hruban RH, Goggins M . Molecular signatures of pancreatic cancer. Arch Pathol Lab Med 2011; 135: 716–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu SH, Patel S, Gingras MC, Nemunaitis J, Zhou G, Chen C et al. PDX-1: demonstration of oncogenic properties in pancreatic cancer. Cancer 2011; 117: 723–733.

    Article  CAS  PubMed  Google Scholar 

  5. Liu SH, Rao DD, Nemunaitis J, Senzer N, Zhou G, Dawson D et al. PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform. PLoS One 2012; 7: e40452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu T, Gou SM, Wang CY, Wu HS, Xiong JX, Zhou F . Pancreas duodenal homeobox-1 expression and significance in pancreatic cancer. World J Gastroenterol 2007; 13: 2615–2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  8. Habener JF, Kemp DM, Thomas MK . Minireview: transcriptional regulation in pancreatic development. Endocrinology 2005; 146: 1025–1034.

    Article  CAS  PubMed  Google Scholar 

  9. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996; 122: 983–995.

    CAS  PubMed  Google Scholar 

  10. Habener JF, Stoffers DA . A newly discovered role of transcription factors involved in pancreas development and the pathogenesis of diabetes mellitus. Proc Assoc Am Physicians 1998; 110: 12–21.

    CAS  PubMed  Google Scholar 

  11. Holland AM, Gonez LJ, Naselli G, Macdonald RJ, Harrison LC . Conditional expression demonstrates the role of the homeodomain transcription factor Pdx1 in maintenance and regeneration of beta-cells in the adult pancreas. Diabetes 2005; 54: 2586–2595.

    Article  CAS  PubMed  Google Scholar 

  12. Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LI, Bulman MP et al. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest 1999; 104: R33–R39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hani EH, Stoffers DA, Chevre JC, Durand E, Stanojevic V, Dina C et al. Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J Clin Invest 1999; 104: R41–R48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shiau MY, Huang CN, Liao JH, Chang YH . Missense mutations in the human insulin promoter factor-1 gene are not a common cause of type 2 diabetes mellitus in Taiwan. J Endocrinol Invest 2004; 27: 1076–1080.

    Article  CAS  PubMed  Google Scholar 

  15. Banakh I, Gonez LJ, Sutherland RM, Naselli G, Harrison LC . Adult pancreas side population cells expand after β cell injury and are a source of insulin-secreting cells. PLoS One 2012; 7: e48977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W-C, Rukstalis JM, Nishimura W, Tchipashvili V, Habener JF, Sharma A et al. Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. J Cell Sci 2010; 123 (Pt 16): 2792–2802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strobel O, Rosow DE, Rakhlin EY, Lauwers GY, Trainor AG, Alsina J et al. Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology 2010; 138: 1166–1177.

    Article  PubMed  Google Scholar 

  18. Szabat M, Luciani DS, Piret JM, Johnson JD . Maturation of adult beta-cells revealed using a Pdx1/insulin dual-reporter lentivirus. Endocrinology 2009; 150: 1627–1635.

    Article  CAS  PubMed  Google Scholar 

  19. Yoneda S, Uno S, Iwahashi H, Fujita Y, Yoshikawa A, Kozawa J et al. Predominance of beta-cell neogenesis rather than replication in humans with an impaired glucose tolerance and newly diagnosed diabetes. J Clin Endocrinol Metab 2013; 98: 2053–2061.

    Article  CAS  PubMed  Google Scholar 

  20. Koya V, Lu S, Sun YP, Purich DL, Atkinson MA, Li SW et al. Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy. Diabetes 2008; 57: 757–769.

    Article  CAS  PubMed  Google Scholar 

  21. Madsen OD, Jensen J, Petersen HV, Pedersen EE, Oster A, Andersen FG et al. Transcription factors contributing to the pancreatic beta-cell phenotype. Horm Metab Res 1997; 29: 265–270.

    Article  CAS  PubMed  Google Scholar 

  22. Serup P, Jensen J, Andersen FG, Jorgensen MC, Blume N, Holst JJ et al. Induction of insulin and islet amyloid polypeptide production in pancreatic islet glucagonoma cells by insulin promoter factor 1. Proc Natl Acad Sci USA 1996; 93: 9015–9020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF . Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 2002; 143: 3152–3161.

    Article  CAS  PubMed  Google Scholar 

  24. Tirone TA, Fagan SP, Templeton NS, Wang X, Brunicardi FC . Insulinoma-induced hypoglycemic death in mice is prevented with beta cell-specific gene therapy. Ann Surg 2001; 233: 603–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang XP, Li ZJ, Magnusson J, Brunicardi FC . Tissue MicroArray analyses of pancreatic duodenal homeobox-1 in human cancers. World J Surg 2005; 29: 334–338.

    Article  PubMed  Google Scholar 

  26. Koizumi M, Doi R, Toyoda E, Masui T, Tulachan SS, Kawaguchi Y et al. Increased PDX-1 expression is associated with outcome in patients with pancreatic cancer. Surgery 2003; 134: 260–266.

    Article  PubMed  Google Scholar 

  27. Quint K, Stintzing S, Alinger B, Hauser-Kronberger C, Dietze O, Gahr S et al. The expression pattern of PDX-1, SHH, Patched and Gli-1 is associated with pathological and clinical features in human pancreatic cancer. Pancreatology 2009; 9: 116–126.

    Article  CAS  PubMed  Google Scholar 

  28. Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ, Bos JL . KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 1988; 16: 7773–7782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M . Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53: 549–554.

    Article  CAS  PubMed  Google Scholar 

  30. Gidekel Friedlander SY, Chu GC, Snyder EL, Girnius N, Dibelius G, Crowley D et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 2009; 16: 379–389.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Levine L, Wy KY, Herrmann H . Decreased levels of an inhibitor of prostaglandin E 9-ketoreductase activity in chick dystrophic breast muscle. Nature 1976; 260: 791–793.

    Article  CAS  PubMed  Google Scholar 

  32. Aigner A . Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J Biomed Biotechnol 2006; 2006: 71659.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Love TM, Moffett HF, Novina CD . Not miR-ly small RNAs: big potential for microRNAs in therapy. J Allergy Clin Immunol 2008; 121: 309–319.

    Article  CAS  PubMed  Google Scholar 

  34. Senior JH . Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 1987; 3: 123–193.

    CAS  PubMed  Google Scholar 

  35. Pan Q, Ramakrishnaiah V, Henry S, Fouraschen S, de Ruiter PE, Kwekkeboom J et al. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut 2012; 61: 1330–1339.

    Article  CAS  PubMed  Google Scholar 

  36. Chen LM, Le HY, Qin RY, Kumar M, Du ZY, Xia RJ et al. Reversal of the phenotype by K-rasval12 silencing mediated by adenovirus-delivered siRNA in human pancreatic cancer cell line Panc-1. World J Gastroenterol 2005; 11: 831–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fleming JB, Shen GL, Holloway SE, Davis M, Brekken RA . Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol Cancer Res 2005; 3: 413–423.

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Wang CY, Dong JH, Chen X, Zhang M, Zhao G . Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassette. World J Gastroenterol 2005; 11: 2026–2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Senzer N, Barve M, Kuhn J, Melnyk A, Beitsch P, Lazar M et al. Phase I trial of “bi-shRNAi(furin)/GMCSF DNA/autologous tumor cell” vaccine (FANG) in advanced cancer. Mol Ther 2012; 20: 679–686.

    Article  CAS  PubMed  Google Scholar 

  40. Strumberg D, Schultheis B, Traugott U, Vank C, Santel A, Keil O et al. Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int J Clin Pharmacol Ther 2012; 50: 76–78.

    Article  CAS  PubMed  Google Scholar 

  41. Rao DD, Maples PB, Senzer N, Kumar P, Wang Z, Pappen BO et al. Enhanced target gene knockdown by a bifunctional shRNA: a novel approach of RNA interference. Cancer Gene Ther 2010; 17: 780–791.

    Article  CAS  PubMed  Google Scholar 

  42. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.

    Article  CAS  PubMed  Google Scholar 

  43. Liu S, Ballian N, Belaguli NS, Patel S, Li M, Templeton NS et al. PDX-1 acts as a potential molecular target for treatment of human pancreatic cancer. Pancreas 2008; 37: 210–220.

    Article  PubMed  Google Scholar 

  44. Jay CM, Ruoff C, Kumar P, Maass H, Spanhel B, Miller M et al. Assessment of intravenous pbi-shRNA PDX1 nanoparticle (OFHIRNA-PDX1) in yucatan swine. Cancer Gene Ther 2013; 20: 683–689.

    Article  CAS  PubMed  Google Scholar 

  45. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441: 537–541.

    Article  CAS  PubMed  Google Scholar 

  46. Giering JC, Grimm D, Storm TA, Kay MA . Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 2008; 16: 1630–1636.

    Article  CAS  PubMed  Google Scholar 

  47. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–637.

    Article  CAS  PubMed  Google Scholar 

  48. Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 2013; 369: 819–829.

    Article  CAS  PubMed  Google Scholar 

  49. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 2013; 3: 406–417.

    Article  CAS  PubMed  Google Scholar 

  50. Kaiser PK, Symons RC, Shah SM, Quinlan EJ, Tabandeh H, Do DV et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol 2010; 150: 33–39 e2.

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen QD, Schachar RA, Nduaka CI, Sperling M, Klamerus KJ, Chi-Burris K et al. Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study). Ophthalmology 2012; 119: 1867–1873.

    Article  PubMed  Google Scholar 

  52. Nguyen QD, Schachar RA, Nduaka CI, Sperling M, Basile AS, Klamerus KJ et al. Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients. Eye 2012; 26: 1099–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA 2010; 107: 8800–8805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. DeVincenzo J, Cehelsky JE, Alvarez R, Elbashir S, Harborth J, Toudjarska I et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Res 2008; 77: 225–231.

    Article  CAS  PubMed  Google Scholar 

  55. Zamora MR, Budev M, Rolfe M, Gottlieb J, Humar A, Devincenzo J et al. RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am J Respir Crit Care Med 2011; 183: 531–538.

    Article  CAS  PubMed  Google Scholar 

  56. Gish RG, Satishchandran C, Young M, Pachuk C . RNA interference and its potential applications to chronic HBV treatment: results of a Phase I safety and tolerability study. Antivir Ther 2011; 16: 547–554.

    Article  CAS  PubMed  Google Scholar 

  57. Wyszko E, Rolle K, Nowak S, Zukiel R, Nowak M, Piestrzeniewicz R et al. A multivariate analysis of patients with brain tumors treated with ATN-RNA. Acta Pol Pharm 2008; 65: 677–684.

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NCI Grant R01 CA95731, The Moss Foundation, Vivian Smith Foundation, MD Anderson Foundation and the H H Lee Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F C Brunicardi.

Ethics declarations

Competing interests

D Rao, CM Jay, P Kumar, N Senzer and N Templeton are employed by Gradalis. N Senzer, FC Brunicardi, D Rao and J Nemunaitis are shareholders in Gradalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Liu, S., Yu, J. et al. Vertically integrated translational studies of PDX1 as a therapeutic target for pancreatic cancer via a novel bifunctional RNAi platform. Cancer Gene Ther 21, 48–53 (2014). https://doi.org/10.1038/cgt.2013.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.84

Keywords

This article is cited by

Search

Quick links