Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA interference targeting human FAK and EGFR suppresses human non-small-cell lung cancer xenograft growth in nude mice

Abstract

Transfection of plasmid vectors coexpressing short hairpin RNA (shRNA) for focal adhesion kinase (FAK) and epidermal growth factor receptor (EGFR) significantly inhibited protein level of FAK and EGFR. Knockdown of FAK and EGFR expression significantly inhibited cell proliferation and induced cell apoptosis of A549 lung cancer cells in vitro. In A549 subcutaneous xenograft model, mice treated for 3 weeks with plasmid that coexpresses FAK and EGFR shRNA had significantly smaller tumors than those in control mice (P<0.01). FAK and EGFR dual silencing also significantly decreased microvessel density, tumor cell proliferation and increased the level of apoptosis in tumor cells. Moreover, administration with plasmid that coexpresses FAK and EGFR shRNA significantly inhibited the A549 experimental lung metastases. Collectively, our data suggest that the dual inhibition of FAK and EGFR by using plasmid vector-based RNA interference might be a novel therapeutic approach to the treatment of human NSCLC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  3. Dempke WC, Suto T, Reck M . Targeted therapies for non-small cell lung cancer. Lung cancer 2010; 67: 257–274.

    Article  PubMed  Google Scholar 

  4. Novello S, Le Chevalier T . Chemotherapy for non-small-cell lung cancer. Part 1: early-stage disease. Oncology 2003; 17: 357–364.

    PubMed  Google Scholar 

  5. Mazzocca A, Carloni V . The metastatic process: methodological advances and pharmacological challenges. Curr Med Chem 2009; 16: 1704–1717.

    Article  CAS  PubMed  Google Scholar 

  6. Kurenova E, Xu LH, Yang X, Baldwin AS, Craven RJ, Hanks SK et al. Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Mol Cell Biol 2004; 24: 4361–4371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC . The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nature reviews. Cancer 2005; 5: 505–515.

    CAS  PubMed  Google Scholar 

  8. Kornberg LJ . Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 1998; 20: 745–752.

    Article  CAS  PubMed  Google Scholar 

  9. Oktay MH, Oktay K, Hamele-Bena D, Buyuk A, Koss LG . Focal adhesion kinase as a marker of malignant phenotype in breast and cervical carcinomas. Hum Pathol 2003; 34: 240–245.

    Article  CAS  PubMed  Google Scholar 

  10. Sood AK, Coffin JE, Schneider GB, Fletcher MS, DeYoung BR, Gruman LM et al. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol 2004; 165: 1087–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carelli S, Zadra G, Vaira V, Falleni M, Bottiglieri L, Nosotti M et al. Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer 2006; 53: 263–271.

    Article  PubMed  Google Scholar 

  12. Liu G, Meng X, Jin Y, Bai J, Zhao Y, Cui X et al. Inhibitory role of focal adhesion kinase on anoikis in the lung cancer cell A549. Cell Biol Int 2008; 32: 663–670.

    Article  CAS  PubMed  Google Scholar 

  13. Yarden Y . The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001; 37: 3–8.

    Article  Google Scholar 

  14. Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, Salonga D et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin Cancer Res 2001; 7: 1850–1855.

    CAS  PubMed  Google Scholar 

  15. Nguyen DM, Schrump DS . Growth factor receptors as targets for lung cancer therapy. Semin Thorac Cardiovasc Surg 2004; 16: 3–12.

    Article  PubMed  Google Scholar 

  16. Sharma SV, Bell DW, Settleman J, Haber DA . Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–181.

    Article  CAS  PubMed  Google Scholar 

  17. Hauck CR, Sieg DJ, Hsia DA, Loftus JC, Gaarde WA, Monia BP et al. Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res 2001; 61: 7079–7090.

    CAS  PubMed  Google Scholar 

  18. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2000; 2: 249–256.

    Article  CAS  PubMed  Google Scholar 

  19. Jones G, Machado J, Merlo A . Loss of focal adhesion kinase (FAK) inhibits epidermal growth factor receptor-dependent migration and induces aggregation of nh(2)-terminal FAK in the nuclei of apoptotic glioblastoma cells. Cancer Res 2001; 61: 4978–4981.

    CAS  PubMed  Google Scholar 

  20. Golubovskaya V, Beviglia L, Xu LH, Earp HS, Craven R, Cance W . Dual inhibition of focal adhesion kinase and epidermal growth factor receptor pathways cooperatively induces death receptor-mediated apoptosis in human breast cancer cells. J Biol Chem 2002; 277: 38978–38987.

    Article  CAS  PubMed  Google Scholar 

  21. Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC . Prospects of RNA interference therapy for cancer. Gene Therapy 2006; 13: 464–477.

    Article  CAS  PubMed  Google Scholar 

  22. Hannon GJ, Rossi JJ . Unlocking the potential of the human genome with RNA interference. Nature 2004; 431: 371–378.

    Article  CAS  PubMed  Google Scholar 

  23. Halder J, Kamat AA, Landen CN, Han LY, Lutgendorf SK, Lin YG et al. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clinical Cancer Res 2006; 12: 4916–4924.

    Article  CAS  Google Scholar 

  24. Smith K, Gunaratnam L, Morley M, Franovic A, Mekhail K, Lee S . Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/- renal cancer. Cancer Res 2005; 65: 5221–5230.

    Article  CAS  PubMed  Google Scholar 

  25. Du XB, Lang JY, Xu JR, Lu Y, Wen YJ, Zhao JM et al. Vesicular stomatitis virus matrix protein gene enhances the antitumor effects of radiation via induction of apoptosis. Apoptosis 2008; 13: 1205–1214.

    Article  CAS  PubMed  Google Scholar 

  26. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002; 346: 92–98.

    Article  CAS  PubMed  Google Scholar 

  27. Raben D, Helfrich B, Bunn PA . Targeted therapies for non-small-cell lung cancer: biology, rationale, and preclinical results from a radiation oncology perspective. Int J Radiat Oncol Biol Phys 2004; 59 (Suppl): 27–38.

    Article  CAS  PubMed  Google Scholar 

  28. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J . Interfering with disease: a progress report on siRNA-based therapeuticss. Nat Rev Drug Discov 2007; 6: 443–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen SM, Wang Y, Xiao BK, Tao ZZ . Effect of blocking VEGF, hTERT and Bcl-xl by multiple shRNA expression vectors on the human laryngeal squamous carcinoma xenograft in nude mice. Cancer Biol Ther 2008; 7: 734–739.

    Article  CAS  PubMed  Google Scholar 

  30. Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M et al. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem 2005; 280: 36529–36540.

    Article  CAS  PubMed  Google Scholar 

  31. Carelli S, Zadra G, Vaira V, Falleni M, Bottiglieri L, Nosotti M et al. Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer 2006; 53 (3): 263–271.

    Article  PubMed  Google Scholar 

  32. Rusch V, Klimstra D, Venkatraman E, Pisters PW, Langenfeld J, Dmitrovsky E . Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res 1997; 3: 515–522.

    CAS  PubMed  Google Scholar 

  33. Jiao X, Wang RY, Qiu Q, Alter HJ, Shih JW . Enhanced hepatitis C virus NS3 specific Th1 immune responses induced by co-delivery of protein antigen and CpG with cationic liposomes. J Gen Virol 2004; 85 (Part 6): 1545–1553.

    Article  CAS  PubMed  Google Scholar 

  34. Sangare L, Morisset R, Omri A, Ravaoarinoro M . Incorporation rates, stabilities, cytotoxicities and release of liposomal tetracycline and doxycycline in human serum. J Antimicrob Chemother 1998; 42: 831–834.

    Article  CAS  PubMed  Google Scholar 

  35. Zelphati O, Szoka FC . Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA 1996; 93: 11493–11498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD . Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer 1995; 72: 896–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995; 55: 3752–3756.

    CAS  PubMed  Google Scholar 

  38. Simberg D, Weisman S, Talmon Y, Barenholz Y . DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. Crit Rev Ther Drug Carrier Syst 2004; 21: 257–317.

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Bai Y, Xie G, Zhang N, Ma YP, Chen LJ et al. Efficient inhibition of non-small-cell lung cancer xenograft by systemic delivery of plasmid-encoding short-hairpin RNA targeting VEGF. Cancer Biother Radiopharm 2010; 25: 65–73.

    Article  CAS  PubMed  Google Scholar 

  40. Wan Y, Huang A, Yang Y, Xie G, Chen X, Hu J et al. A vector-based short hairpin RNA targeting Aurora A inhibits breast cancer growth. Int J Oncol 2010; 36: 1121–1128.

    Article  CAS  PubMed  Google Scholar 

  41. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN . Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 1997; 15: 647–652.

    Article  CAS  PubMed  Google Scholar 

  42. Christensen CL, Gjetting T, Poulsen TT, Cramer F, Roth JA, Poulsen HS . Targeted cytosine deaminase-uracil phosphoribosyl transferase suicide gene therapy induces small cell lung cancer-specific cytotoxicity and tumor growth delay. Clinical Cancer Res 2010; 16: 2308–2319.

    Article  CAS  Google Scholar 

  43. Lu C, Stewart D, Ji L, Ramesh R, Jayachandran G, Erasmus J et al. Systemic gene therapy with tumor suppressor FUS1-nanoparticles for recurrent/metastatic lung cancer. J Clin Oncol 2010; 28: 7582.

    Article  Google Scholar 

  44. Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS one 2012; 7: e34833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Key Basic Research Program (973 Program) of China (2012CB917104 and 2010CB529900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Deng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Zhang, X., Cheng, L. et al. RNA interference targeting human FAK and EGFR suppresses human non-small-cell lung cancer xenograft growth in nude mice. Cancer Gene Ther 20, 101–108 (2013). https://doi.org/10.1038/cgt.2012.91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.91

Keywords

This article is cited by

Search

Quick links